Home
Class 12
MATHS
find |vec x| , if for a unit vector v...

find `|vec x|` , if for a unit vector `vec a, (vec x- vec a)( vec x + vec a)`=12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{x}\) given the equation \((\vec{x} - \vec{a})(\vec{x} + \vec{a}) = 12\), where \(\vec{a}\) is a unit vector. ### Step-by-step Solution: 1. **Start with the given equation**: \[ (\vec{x} - \vec{a})(\vec{x} + \vec{a}) = 12 \] 2. **Use the distributive property (FOIL method)**: \[ \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12 \] 3. **Simplify the equation**: - The terms \(\vec{x} \cdot \vec{a}\) and \(-\vec{a} \cdot \vec{x}\) cancel each other out. - The term \(\vec{a} \cdot \vec{a}\) is equal to \(|\vec{a}|^2\). Since \(\vec{a}\) is a unit vector, \(|\vec{a}|^2 = 1\). - Thus, we have: \[ \vec{x} \cdot \vec{x} - 1 = 12 \] 4. **Rearrange the equation**: \[ \vec{x} \cdot \vec{x} = 12 + 1 \] \[ \vec{x} \cdot \vec{x} = 13 \] 5. **Find the magnitude of \(\vec{x}\)**: - The magnitude of a vector \(\vec{x}\) is given by \(|\vec{x}| = \sqrt{\vec{x} \cdot \vec{x}}\). - Therefore: \[ |\vec{x}| = \sqrt{13} \] ### Final Answer: \[ |\vec{x}| = \sqrt{13} \]

To solve the problem, we need to find the magnitude of the vector \(\vec{x}\) given the equation \((\vec{x} - \vec{a})(\vec{x} + \vec{a}) = 12\), where \(\vec{a}\) is a unit vector. ### Step-by-step Solution: 1. **Start with the given equation**: \[ (\vec{x} - \vec{a})(\vec{x} + \vec{a}) = 12 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Integer type|17 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Find | vec x| , if for a unit vector vec a ,\ ( vec x- vec a)*( vec x+ vec a)=15.

Find | vec x| , if for a unit vector vec a ,\ ( vec x- vec a).( vec x+ vec a)=15.

Find | vec x| if for a unit vector vec a ,\ ( vec x- vec a)dot \ ( vec x+ vec a)=15.

In sub-parts (i) and (ii) choose the correct option and in sub-parts (iii) to (v), answer the questions as instructed. Find abs(vec(x)) , if for a unit vector vec(a), (vec(x)-vec(a))*(vec(x)+vec(a))=12

If vec a\ is a unit vector, then find | vec x| in each of the following: ( vec x- vec a)dot'( vec x+ vec a)=12

If vec a is a unit vector and (vec x - vec a).(vec x + vec a)=8 , then find |vec x|

If vec a is a unit vector and ( vec x- vec a)dot( vec x+ vec a)=24 , then write the value of | vec x|

If vec a\ is a unit vector, then find | vec x| in each of the following: ( vec x- vec a)dot'( vec x+ vec a)=8

If vec p is a unit vector and ( vec x-\ vec p).( vec x+\ vec p)=80 , then find | vec x|

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between c and x dot