Home
Class 12
MATHS
If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb...

If `veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb= b_(1)hati+b_(2)hatj + b_(3)hatk, vecc=c_(1)hati+c_(2)hatj+c_(3)hatk` and `[3veca+vecb \ \ 3vecb+vecc \ \ 3vecc + veca] =lambda|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}| " then find the value of " lambda/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the scalar triple product given in the question and relate it to the determinant of the vectors provided. Let's break it down step by step. ### Step 1: Understand the Given Vectors We have three vectors: - \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) - \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) - \(\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}\) ### Step 2: Write the Left-Hand Side (LHS) We need to compute the scalar triple product: \[ [3\vec{a} + \vec{b}, 3\vec{b} + \vec{c}, 3\vec{c} + \vec{a}] \] ### Step 3: Expand the Scalar Triple Product Using the properties of scalar triple products, we can express this as: \[ = (3\vec{a} + \vec{b}) \cdot ((3\vec{b} + \vec{c}) \times (3\vec{c} + \vec{a})) \] ### Step 4: Distribute the Cross Product We can expand the cross product: \[ (3\vec{b} + \vec{c}) \times (3\vec{c} + \vec{a}) = 3\vec{b} \times 3\vec{c} + 3\vec{b} \times \vec{a} + \vec{c} \times 3\vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we can simplify this to: \[ = 9(\vec{b} \times \vec{c}) + 3(\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) \] ### Step 5: Substitute Back into the Scalar Triple Product Now substitute this back into the scalar triple product: \[ [3\vec{a} + \vec{b}, 9(\vec{b} \times \vec{c}) + 3(\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a})] \] ### Step 6: Factor Out Common Terms We can factor out the common terms: \[ = 3^3 [\vec{a}, \vec{b}, \vec{c}] + 3^2 [\vec{a}, \vec{b}, \vec{c}] + [\vec{a}, \vec{b}, \vec{c}] \] This gives us: \[ = 27[\vec{a}, \vec{b}, \vec{c}] + 9[\vec{a}, \vec{b}, \vec{c}] + [\vec{a}, \vec{b}, \vec{c}] = 37[\vec{a}, \vec{b}, \vec{c}] \] ### Step 7: Relate to the Right-Hand Side (RHS) From the problem, we know: \[ [3\vec{a} + \vec{b}, 3\vec{b} + \vec{c}, 3\vec{c} + \vec{a}] = \lambda |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)| \] ### Step 8: Equate and Solve for \(\lambda\) Setting the LHS equal to the RHS gives: \[ 37[\vec{a}, \vec{b}, \vec{c}] = \lambda |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)| \] Since \([\vec{a}, \vec{b}, \vec{c}] = |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)|\), we have: \[ 37 = \lambda \] ### Step 9: Find \(\frac{\lambda}{4}\) Finally, we need to find: \[ \frac{\lambda}{4} = \frac{37}{4} = 9.25 \] ### Final Answer Thus, the value of \(\frac{\lambda}{4}\) is: \[ \frac{\lambda}{4} = 9.25 \]

To solve the problem, we need to evaluate the scalar triple product given in the question and relate it to the determinant of the vectors provided. Let's break it down step by step. ### Step 1: Understand the Given Vectors We have three vectors: - \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) - \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) - \(\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Martrix - match type|10 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let veca=a_1hati+a_2hatj+a_3hatk, vecb=b_1hati+b_2hatj+b_3hatk and vecc=c_1hati+c_2hatj+c_3hatk then show that vecaxx(vecb+vecc)=vecaxxb+vecaxxvecc

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(1)hati + b_(2)hatj + b_(3)hatk and vecc=c_(1)hati +c_(2)hatj +c_(3)hatk be three non-zero vectors such that vecc is a unit vector perpendicular to both vectors, veca and vecb . If the angle between veca and vecb is pi//6 "then" |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2) is equal to

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb=b_(1)hati+b_(2)hatj+b_(3)hatk and vecc=c_(1)hati+c_(2)hatj+c_(3)hatk be three non zero vectors such that vecc is a unit vector perpendicular to both veca and vecb . If the angle between veca and vecb is (pi)/6 , then |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|^(2) is equal to

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let V be the volume of the parallelepied formed by the vectors, veca = a_(1)hati=a_(2)hatj + a_(3) hatk , vecb = b_(1) hati + b_(2)hatj + b_(3) hatk and vecc =c_(1)hati + c_(2)hatj + c_(3)hatk . if a_(r) b_(r) nad c_(r) " where " r= 1,2,3 are non- negative real numbers and sum_(r=1)^(3) (a_(r) + b_(r)+c_(r))=3L " show that " V leL^(3)

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

veca=2veci+vecj+veck , vecb=b_(1)hati+b_(2)hatj+b_(3)hatk , veca xx vecb=5hati+2hatj-12hatk, veca.vecb=11 , then b_(1)+b_(2)+b_(3)=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(2)hatj+b_(3)hatk and vecc=c_(1)hati+c_(2)hatj+c_(3)hatk gve three non-zero vectors such that vecc is a unit vector perpendicular to both veca and vecb . If the angle between veca and vecb is pi/6 , then prove that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|p=1/4 (a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Integer type
  1. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  2. Let vecu be a vector on rectangular coodinate system with sloping angl...

    Text Solution

    |

  3. Find the absolute value of parameter t for which the area of the ...

    Text Solution

    |

  4. If veca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk...

    Text Solution

    |

  5. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  6. If , vecx, vecy are two non-zero and non-collinear vectors satisfying ...

    Text Solution

    |

  7. Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw...

    Text Solution

    |

  8. The volume of the tetrahedron whose vertices are the points with posit...

    Text Solution

    |

  9. Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk ,...

    Text Solution

    |

  10. Let a three- dimensional vector vecV satisfy the condition , 2vecV + v...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  12. Let vec O A= vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  13. Find the work done by the force F=3 hat i- hat j-2 hat k acrting on...

    Text Solution

    |

  14. If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt...

    Text Solution

    |

  15. Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be...

    Text Solution

    |

  16. If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|ve...

    Text Solution

    |

  17. Let veca,vecb,and vecc be three non-coplanar ubit vectors such the ...

    Text Solution

    |