Home
Class 12
MATHS
The scalar vecA. (vecB.vecC)xx(vecA + ve...

The scalar `vecA. (vecB.vecC)xx(vecA + vecB + vecC) ` equals

A

0

B

`[vecA vecB vecC]+ [vecB vecC vecA] `

C

`[vecA vecB vecC]`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a

`vecA.(vecB + vecC) xx (vecA + vecB +vecC)`
` vecA . ([vecB xx vecA +vecB xx vecB + vecC + vecC xx vecA + vecC xx vecB +vecC xx vecC]`
`= vecA.vecBxxvecA + vecA.vecBxxvecC+vecA.vecCxx vecA + vecA+ vecC xx vecB " " ( "using" veca xx veca =0)`
`0+[vecA vecB vecC]+0+ [vecA vecC vecB]`
`[vecA vecB vecC]-[vecA vecB vecC]`
=0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If vecA,vecB and vecC are three non coplanar then (vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)} equals: (A) 0 (B) [vecA vecB vecC] (C) 2[vecA vecB vecC] (D) -[vecA vecB vecC]

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Let vec r xx veca = vec b xx veca and vecc vecr=0 , where veca.vecc ne 0 , then veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr) is equal to __________.