Home
Class 12
MATHS
If veca , vecb and vecc are three non-ze...

If `veca , vecb and vecc` are three non-zero, non- coplanar vectors and `vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1),` `vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1),` ` vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1)`, then the set of mutually orthogonal vectors is

A

(a) `(veca,vecb_(1),vecc_(3))`

B

(b) `(veca,vecb_(1),vecc_(2))`

C

(c) `(veca, vecb_(1),vecc_(1))`

D

(d) `(veca,vecb_(2),vecc_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and check for mutual orthogonality among them. We have three non-zero, non-coplanar vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \), and we need to find the set of mutually orthogonal vectors among the defined vectors \( \vec{b}_1, \vec{b}_2, \vec{c}_1, \vec{c}_2, \vec{c}_3, \vec{c}_4 \). ### Step-by-Step Solution: 1. **Define the Vectors**: - Given: \[ \vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] \[ \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] \[ \vec{c}_1 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1 \] \[ \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1 \] \[ \vec{c}_3 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1 \] \[ \vec{c}_4 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1 \] 2. **Check Orthogonality**: - We need to check if the dot products among these vectors equal zero. - Start with \( \vec{a} \cdot \vec{b}_1 \): \[ \vec{a} \cdot \vec{b}_1 = \vec{a} \cdot \left( \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \right) \] \[ = \vec{a} \cdot \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} (\vec{a} \cdot \vec{a}) = \vec{a} \cdot \vec{b} - \frac{(\vec{b} \cdot \vec{a}) |\vec{a}|^2}{|\vec{a}|^2} = 0 \] - Thus, \( \vec{a} \) and \( \vec{b}_1 \) are orthogonal. 3. **Check \( \vec{b}_1 \) with \( \vec{c}_2 \)**: - Calculate \( \vec{b}_1 \cdot \vec{c}_2 \): \[ \vec{b}_1 \cdot \vec{c}_2 = \vec{b}_1 \cdot \left( \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1 \right) \] - Simplifying gives: \[ = \vec{b}_1 \cdot \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{b}_1 \cdot \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} |\vec{b}_1|^2 \] - Since \( \vec{b}_1 \cdot \vec{a} = 0 \) and \( \vec{b}_1 \cdot \vec{b}_1 = |\vec{b}_1|^2 \), we find: \[ \vec{b}_1 \cdot \vec{c}_2 = 0 \] 4. **Check \( \vec{a} \cdot \vec{c}_2 \)**: - Calculate \( \vec{a} \cdot \vec{c}_2 \): \[ \vec{a} \cdot \vec{c}_2 = \vec{a} \cdot \left( \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1 \right) \] - Simplifying gives: \[ = \vec{a} \cdot \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} |\vec{a}|^2 - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \cdot 0 = 0 \] 5. **Conclusion**: - We have shown that: \[ \vec{a} \cdot \vec{b}_1 = 0, \quad \vec{b}_1 \cdot \vec{c}_2 = 0, \quad \vec{a} \cdot \vec{c}_2 = 0 \] - Therefore, the set of mutually orthogonal vectors is \( \{ \vec{a}, \vec{b}_1, \vec{c}_2 \} \). ### Final Answer: The set of mutually orthogonal vectors is \( \{ \vec{a}, \vec{b}_1, \vec{c}_2 \} \).

To solve the problem, we need to analyze the given vectors and check for mutual orthogonality among them. We have three non-zero, non-coplanar vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \), and we need to find the set of mutually orthogonal vectors among the defined vectors \( \vec{b}_1, \vec{b}_2, \vec{c}_1, \vec{c}_2, \vec{c}_3, \vec{c}_4 \). ### Step-by-Step Solution: 1. **Define the Vectors**: - Given: \[ \vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. vecp, vecq and vecr are three mutually prependicular vectors of the sa...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca, vecb and vecc form the sides, BC , CA and AB, res...

    Text Solution

    |

  5. Let vectors veca, vecb veca and vecd be such that (veca xxvecb)xx (vec...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca + 2vecb and 5 vec...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. If veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk andvecc= hathatj-h...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. If veca, vecc, vecc and vecd are unit vectors such that (vecaxx vecb)....

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B...

    Text Solution

    |

  18. Let P,Q, R and S be the points on the plane with postion vectors -2hat...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let vec(PR) = 3hati + hatj -2hatk and vec(SQ) =hati-3hatj - 4hatk dete...

    Text Solution

    |