Home
Class 12
MATHS
A box B(1) contains 1 white ball, 3 red ...

A box `B_(1)` contains 1 white ball, 3 red balls, and 2 black balls. An- other box `B_(2)` contains 2 white balls, 3 red balls and 4 black balls. A third box `B_(3)` contains 3 white balls, 4 red balls, and 5 black balls.
If 2 balls are drawn (without replecement) from a randomly selected box and one of the balls is white and the other ball is red the probability that these 2 balls are drawn from box `B_(2)` is

A

`116//182`

B

`126//181`

C

`65//181`

D

`55//181`

Text Solution

Verified by Experts

The correct Answer is:
D

Let A: one ball is white and other is red
`E_(1):` both balls are from box `B_(1),`
`E_(2): ` both balls are from box `B_(2),`
`E_(3):` both balls are form box `B_(3)`
Hence, P (required) `=P((E_(2))/(A))`
`=(P((A)/(E_(2))).P(E_(2)))/(P((A)/(E_(1))).P(E_(1))+P((A)/(E_(2))).P(E_(2))+P((A)/(E_(3))).P(E_(3)))`
`=((""^(2)C_(1)xx""^(3)C_(1))/(""^(9)C_(2))xx1/3)/((""^(1)C_(1)xx""^(3)C_(1))/(""^(6)C_(2))xx1/3+(""^(2)C_(1)xx""^(3)C_(1))/(""^(9)C_(2))xx1/3+(""^(3)C_(1)xx""^(4)C_(1))/(""^(12)C_(2))xx1/3)`
`(1/6)/(1/5+1/6+2/11)=55/181`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|10 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise NUMARICAL VALUE TYPE|24 Videos
  • PROBABILITY II

    CENGAGE ENGLISH|Exercise MULTIPLE CHOICE ANSWER TYPE|17 Videos
  • PROBABILITY I

    CENGAGE ENGLISH|Exercise JEE Advanced|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos

Similar Questions

Explore conceptually related problems

A box B_(1) contains 1 white ball, 3 red balls, and 2 black balls. An- other box B_(2) contains 2 white balls, 3 red balls. A third box B_(3) contains 3 white balls, 4 red balls, and 5 black balls. If 2 balls are drawn (without replecement) from a randomly selected box and one of the balls is white and the other ball is red the probability that these 2 balls are drawn from box B_(2) is

A box B_(1) contains 1 white ball, 3 red balls, and 2 black balls. An- other box B_(2) contains 2 white balls, 3 red balls and 4 black balls. A third box B_(3) contains 3 white balls, 4 red balls, and 5 black balls. If 1 ball is drawn from each of the boxes B_(1),B_(2) and B_(3), the probability that all 3 drawn balls are of the same color is

A box B_1 contains 1 white ball, 3 red balls and 2 black balls. Another box B_2 contains 2 white balls, 3 red balls and 4 black balls. A third box B_3 contains 3 white balls, 4 red balls and 5 black balls.If 1 ball is drawn from each of the boxes B_1 , B_2 and B_3 , then the probability that all 3 drawn balls are of the same colour , is

A box 'A' contains 2 white, 3 red and 2 black balls. Another box 'B' contains 4 white, 2 red and 3 black balls. If two balls are drawn at random, without replacement, from a randomly selected box and one ball turns out to be white while the other ball turns out to be red, then the probability that both balls are drawn from box 'B' is :

A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.

A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.

A bag contains 7 white, 5 black and 4 red balls, find the probability that the balls is white.

Box A has 3 white and 2 red balls, box B has 2 white and 4 red balls. If two balls are selected at random without replacements from the box A and 2 more are selected at random from B, the probability that all the four balls are white is

A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?

A bag contains 4 white balls and 3 black balls. If two balls are drawn at random, then mean of number of white balls is

CENGAGE ENGLISH-PROBABILITY II-LINKED COMPREHENSION TYPE
  1. A fair die is tossed repeatedly until a 6 is obtained. Let X denote th...

    Text Solution

    |

  2. Let U1 , and U2, be two urns such that U1, contains 3 white and 2 red ...

    Text Solution

    |

  3. A box contains 7 red balls, 8 green balls and 5 white balls. A ball is...

    Text Solution

    |

  4. A box B(1) contains 1 white ball, 3 red balls, and 2 black balls. An- ...

    Text Solution

    |

  5. A box B(1) contains 1 white ball, 3 red balls, and 2 black balls. An- ...

    Text Solution

    |

  6. Let n(1)and n(2) be the number of red and black balls, respectively, i...

    Text Solution

    |

  7. Let n(1)and n(2) be the number of red and black balls, respectively, i...

    Text Solution

    |

  8. Football teams T(1)and T(2) have to play two games are independent. Th...

    Text Solution

    |

  9. Football teams T1 and T2 have to play two games against each other. It...

    Text Solution

    |

  10. A fair die is tossed repeatedly until a 6 is obtained. Let X denote th...

    Text Solution

    |

  11. A fair die is tossed repeatedly until a 6 is obtained. Let X denote th...

    Text Solution

    |

  12. A fair die is tossed repeatedly until a 6 is obtained. Let X denote th...

    Text Solution

    |

  13. Let U1 , and U2, be two urns such that U1, contains 3 white and 2 red ...

    Text Solution

    |

  14. Let U1 and U2 be two urns such that U1 contains 3 white and 2 red ball...

    Text Solution

    |

  15. A box B(1) contains 1 white ball, 3 red balls, and 2 black balls. An- ...

    Text Solution

    |

  16. A box B(1) contains 1 white ball, 3 red balls, and 2 black balls. An- ...

    Text Solution

    |

  17. Let n(1)and n(2) be the number of red and black balls, respectively, i...

    Text Solution

    |

  18. Let n(1)and n(2) be the number of red and black balls, respectively, i...

    Text Solution

    |

  19. Football teams T(1)and T(2) have to play two games are independent. Th...

    Text Solution

    |

  20. Football teams T(1)and T(2) have to play two games are independent. Th...

    Text Solution

    |