Home
Class 12
MATHS
Statement 1: Let f: RvecR be a real-valu...

Statement 1: Let `f: RvecR` be a real-valued function `AAx ,y in R` such that `|f(x)-f(y)|<=|x-y|^3` . Then `f(x)` is a constant function. Statement 2: If the derivative of the function w.r.t. `x` is zero, then function is constant.

Text Solution

AI Generated Solution

To solve the problem step by step, we need to analyze the given statements and derive the conclusion based on the properties of differentiable functions. ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We are given that for a function \( f: \mathbb{R} \to \mathbb{R} \), the condition \( |f(x) - f(y)| \leq |x - y|^3 \) holds for all \( x, y \in \mathbb{R} \). 2. **Rearranging the Inequality**: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Let f: R -> R be a real-valued function AAx ,y in R such that |f(x)-f(y)|<=|x-y|^3 . Then f(x) is a constant function. Statement 2: If the derivative of the function w.r.t. x is zero, then function is constant.

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . If sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , then a=

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a,

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(0) is equals a. 1 b. 0 c. -1 d. none of these

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The value of f(10) is equal to

Suppose f: RvecR^+ be a differentiable function such that 3f(x+y)=f(x)f(y)AAx ,y in R with f(1)=6. Then the value of f(2) is 6 b. 9 c. 12 d. 15

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(x) is Odd function Even function Odd and even function simultaneously Neither even nor odd

Let f(x) be real valued differentiable function not identically zero such that f(x+y^(2n+1)=f(x)+{f(y)}^(2n+1),nin Nandx,y are any real numbers and f'(0)le0. Find the values of f(5) andf'(10)