Home
Class 12
MATHS
"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(...

`"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = 2\) given the parametric equations \(x = \frac{2t}{1 + t^2}\) and \(y = \frac{1 - t^2}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{2t}{1 + t^2} \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = 2(1 + t^2) - 4t^2 = 2 + 2t^2 - 4t^2 = 2 - 2t^2 \] Thus, we have: \[ \frac{dx}{dt} = \frac{2 - 2t^2}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Calculating the numerator: \[ = -2t(1 + t^2) - 2t(1 - t^2) = -2t - 2t^3 - 2t + 2t^3 = -4t \] Thus, we have: \[ \frac{dy}{dt} = \frac{-4t}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\frac{-4t}{(1 + t^2)^2}}{\frac{2 - 2t^2}{(1 + t^2)^2}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-4t}{2 - 2t^2} \] ### Step 4: Simplify \(\frac{dy}{dx}\) Factoring out \(-2\) from the denominator: \[ \frac{dy}{dx} = \frac{-4t}{-2(1 - t^2)} = \frac{2t}{1 - t^2} \] ### Step 5: Evaluate \(\frac{dy}{dx}\) at \(t = 2\) Substituting \(t = 2\): \[ \frac{dy}{dx} = \frac{2(2)}{1 - (2)^2} = \frac{4}{1 - 4} = \frac{4}{-3} = -\frac{4}{3} \] Thus, the final answer is: \[ \frac{dy}{dx} \text{ at } t = 2 \text{ is } -\frac{4}{3}. \] ---

To find \(\frac{dy}{dx}\) at \(t = 2\) given the parametric equations \(x = \frac{2t}{1 + t^2}\) and \(y = \frac{1 - t^2}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{2t}{1 + t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

If x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx is

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=sin^-1""(2t)/(1+t^2) and y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.