Home
Class 12
MATHS
Find (dy)/(dx) if x=cos theta - cos 2 ...

Find `(dy)/(dx)` if `x=cos theta - cos 2 theta`
`and" "y = sin theta - sin 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will use the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = \cos \theta - \cos 2\theta \] Using the chain rule and the derivative of cosine: \[ \frac{dx}{d\theta} = -\sin \theta - (-\sin 2\theta \cdot 2) = -\sin \theta + 2\sin 2\theta \] Thus, \[ \frac{dx}{d\theta} = 2\sin 2\theta - \sin \theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = \sin \theta - \sin 2\theta \] Using the chain rule and the derivative of sine: \[ \frac{dy}{d\theta} = \cos \theta - (2\cos 2\theta) \] Thus, \[ \frac{dy}{d\theta} = \cos \theta - 2\cos 2\theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\cos \theta - 2\cos 2\theta}{2\sin 2\theta - \sin \theta} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos \theta - 2\cos 2\theta}{2\sin 2\theta - \sin \theta} \] ---

To find \(\frac{dy}{dx}\) given the equations \(x = \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will use the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = \cos \theta - \cos 2\theta \] Using the chain rule and the derivative of cosine: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

"Find "(dy)/(dx) if x =a(theta- sin theta) and y= a (1- cos theta).

Find (dy)/(dx) when x = a cos theta and y = b sin theta

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Find (dy)/(dx) , when x=b\ sin^2theta and y=a\ cos^2theta

Prove that ( cos theta + cos 2 theta + cos 3 theta + cos 4 theta)/(sin theta + sin 2 theta + sin 3 theta + sin 4 theta)= cot ""(5theta)/(2).