Home
Class 12
MATHS
Differentiate sqrt(((x-1)(x-2))/((x-3)(x...

Differentiate `sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))` with respect to `x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function in a more manageable form: \[ y = \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{1/2} \] ### Step 2: Apply Logarithmic Differentiation Taking the natural logarithm of both sides: \[ \log y = \frac{1}{2} \log \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right) \] ### Step 3: Use Logarithm Properties Using the properties of logarithms: \[ \log y = \frac{1}{2} \left( \log((x-1)(x-2)) - \log((x-3)(x-4)(x-5)) \right) \] This can be expanded further: \[ \log y = \frac{1}{2} \left( \log(x-1) + \log(x-2) - (\log(x-3) + \log(x-4) + \log(x-5)) \right) \] ### Step 4: Differentiate Both Sides Now, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x-1} + \frac{1}{x-2} - \left( \frac{1}{x-3} + \frac{1}{x-4} + \frac{1}{x-5} \right) \right) \] ### Step 5: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{1}{x-1} + \frac{1}{x-2} - \left( \frac{1}{x-3} + \frac{1}{x-4} + \frac{1}{x-5} \right) \right) \] ### Step 6: Substitute Back for \( y \) Substituting \( y \) back into the equation: \[ \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left( \frac{1}{x-1} + \frac{1}{x-2} - \left( \frac{1}{x-3} + \frac{1}{x-4} + \frac{1}{x-5} \right) \right) \] ### Final Answer Thus, the derivative of the given function is: \[ \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left( \frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right) \]

To differentiate the function \( y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function in a more manageable form: \[ y = \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{1/2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Differentiate (sqrt(x)+(1)/(x))(x-(1)/sqrt(x)) with respect to 'x'.

Differentiate sqrt(((x-3)(x^2+4))/(3x^2+4x+5)) w.r.t x.

Differentiate log(x+sqrt(x^(2)+a))

Differentiate (sqrt(a)+sqrt(x))/(sqrt(a)-sqrt(x)) with respect to 'x'.

Differentiate sqrt(x) +1/ (sqrt(x) )

Differentiate the functions given w.r.t. x: sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(x a))) with respect to x

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2