Home
Class 12
MATHS
If y log x= x-y, prove that (dy)/(dx)= (...

If `y log x= x-y`, prove that `(dy)/(dx)= (log x)/((1+log x)^(2))`

Text Solution

Verified by Experts

`"We have "x^(y)=e^(x-y)`
`"or "e^(ylog x)=e^(x-y)" "[becausex^(y)=e^(log x^(y))=e^(y log x)]`
`"or "ylog x = x-y`
`"or y=(x)/(1+log x)`
On differentiating both the sides w.r.t. x, we get
`(dy)/(dx)=((1+log x)xx1-x(0+(1)/(x)))/((1+ log x)^(2))=(log x)/((1+ log x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If x y\ log(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y)) .

If y=(x-1)log(x-1)-(x+1)log(x+1) , prove that (dy)/(dx)=log((x-1)/(1+x))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

Solve (dy)/(dx)+(y)/(x)=log x.

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)