Home
Class 12
MATHS
"If "y=(tan x)^((tan x)^(tan x))," then ...

`"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\tan x)^{(\tan x)^{(\tan x)}} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log \left( (\tan x)^{(\tan x)^{(\tan x)}} \right) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms, we can bring down the exponent: \[ \log y = (\tan x)^{(\tan x)} \cdot \log(\tan x) \] ### Step 3: Take the logarithm again Now, we take the logarithm of both sides again: \[ \log(\log y) = \log \left( (\tan x)^{(\tan x)} \cdot \log(\tan x) \right) \] Using the property of logarithms that states \( \log(ab) = \log a + \log b \): \[ \log(\log y) = \log((\tan x)^{(\tan x)}) + \log(\log(\tan x)) \] ### Step 4: Apply the logarithmic power rule again We can simplify further: \[ \log(\log y) = (\tan x) \cdot \log(\tan x) + \log(\log(\tan x)) \] ### Step 5: Differentiate both sides Now we differentiate both sides with respect to \( x \): Using implicit differentiation on the left side: \[ \frac{1}{\log y} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} \left( (\tan x) \cdot \log(\tan x) + \log(\log(\tan x)) \right) \] ### Step 6: Differentiate the right side using the product rule For the right side, we apply the product rule: \[ \frac{d}{dx} \left( (\tan x) \cdot \log(\tan x) \right) = \tan x \cdot \frac{d}{dx}(\log(\tan x)) + \log(\tan x) \cdot \frac{d}{dx}(\tan x) \] Calculating \( \frac{d}{dx}(\log(\tan x)) \) and \( \frac{d}{dx}(\tan x) \): \[ \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x \] \[ \frac{d}{dx}(\tan x) = \sec^2 x \] ### Step 7: Substitute back into the equation Substituting these derivatives back gives: \[ \frac{dy}{dx} = y \cdot \log y \left( \tan x \cdot \left( \frac{1}{\tan x} \sec^2 x \right) + \log(\tan x) \cdot \sec^2 x \right) \] This simplifies to: \[ \frac{dy}{dx} = y \cdot \log y \cdot \sec^2 x \left( 1 + \log(\tan x) \right) \] ### Step 8: Final expression Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = y \cdot \log y \cdot \sec^2 x \cdot \left( 1 + \log(\tan x) \right) \]

To find the derivative of the function \( y = (\tan x)^{(\tan x)^{(\tan x)}} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log \left( (\tan x)^{(\tan x)^{(\tan x)}} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

If y=e^((tan^(-1)x) then find (dy)/(dx)

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If y= e^(x) log tan 2x , than find (dy)/(dx)

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If tan(x+y)=e^(x+y) , then (dy)/(dx)

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y=btan^(-1)(x/a+tan^(-1) y /x),f i nd (dy)/(dx)dot