Home
Class 12
MATHS
Find the derivative of sec^(-1)((1)/(2x^...

Find the derivative of `sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \) at \( x = \frac{1}{2} \), we can follow these steps: ### Step 1: Substitute \( x = \cos(\theta) \) Let \( x = \cos(\theta) \). Then, we have: \[ z = \sqrt{1 - x^2} = \sqrt{1 - \cos^2(\theta)} = \sqrt{\sin^2(\theta)} = \sin(\theta) \] ### Step 2: Rewrite \( y \) Substituting \( x = \cos(\theta) \) into \( y \): \[ y = \sec^{-1}\left(\frac{1}{2(\cos^2(\theta)) - 1}\right) = \sec^{-1}(\cos(2\theta)) \] ### Step 3: Simplify \( y \) Since \( \sec^{-1}(\cos(2\theta)) = 2\theta \), we have: \[ y = 2\theta \] ### Step 4: Differentiate \( y \) and \( z \) Now, we need to find \( \frac{dy}{dz} \): 1. Differentiate \( y \) with respect to \( \theta \): \[ \frac{dy}{d\theta} = 2 \] 2. Differentiate \( z \) with respect to \( \theta \): \[ \frac{dz}{d\theta} = \cos(\theta) \] ### Step 5: Apply the Chain Rule Using the chain rule, we find: \[ \frac{dy}{dz} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dz} = \frac{dy}{d\theta} \cdot \frac{1}{\frac{dz}{d\theta}} = \frac{2}{\cos(\theta)} \] ### Step 6: Find \( \theta \) at \( x = \frac{1}{2} \) When \( x = \frac{1}{2} \): \[ \cos(\theta) = \frac{1}{2} \implies \theta = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \] ### Step 7: Calculate \( \cos(\theta) \) At \( \theta = \frac{\pi}{3} \): \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] ### Step 8: Substitute \( \theta \) back into \( \frac{dy}{dz} \) Now substitute \( \theta = \frac{\pi}{3} \) into \( \frac{dy}{dz} \): \[ \frac{dy}{dz} = \frac{2}{\cos\left(\frac{\pi}{3}\right)} = \frac{2}{\frac{1}{2}} = 4 \] ### Final Answer Thus, the derivative of \( y \) with respect to \( z \) at \( x = \frac{1}{2} \) is: \[ \frac{dy}{dz} = 4 \] ---

To find the derivative of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \) at \( x = \frac{1}{2} \), we can follow these steps: ### Step 1: Substitute \( x = \cos(\theta) \) Let \( x = \cos(\theta) \). Then, we have: \[ z = \sqrt{1 - x^2} = \sqrt{1 - \cos^2(\theta)} = \sqrt{\sin^2(\theta)} = \sin(\theta) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of sec^(-1)(1/(2x^2-1))wdotrdott sqrt(1-x^2) at x=1/2

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

The derivative of sin^(-1)((x)/(sqrt(1+x^(2)))) w.r.t .x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t cos^(-1)x is

The derivative of tan^(-1)((x)/(sqrt(1-x^(2)))) w. r.t is

The differential cofficient of sec^(- 1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) is-

The derivative of tan^(-1)((3x-x^(3))/(1-3x^(2))) w.r.t.x is