Home
Class 12
MATHS
"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, ...

`"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, and g'(x) = sec x, " then find the value of of "lim_(xrarr0) ((dy//dz))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{dy/dz}{x} \] where \( y = f(x^3) \) and \( z = g(x^5) \) with \( f'(x) = \tan x \) and \( g'(x) = \sec x \). ### Step-by-step Solution: 1. **Differentiate \( y \) with respect to \( x \)**: \[ y = f(x^3) \] Using the chain rule: \[ \frac{dy}{dx} = f'(x^3) \cdot \frac{d}{dx}(x^3) = f'(x^3) \cdot 3x^2 \] 2. **Differentiate \( z \) with respect to \( x \)**: \[ z = g(x^5) \] Again, using the chain rule: \[ \frac{dz}{dx} = g'(x^5) \cdot \frac{d}{dx}(x^5) = g'(x^5) \cdot 5x^4 \] 3. **Find \( \frac{dy}{dz} \)**: Using the formula: \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} \] Substitute the derivatives found in the previous steps: \[ \frac{dy}{dz} = \frac{f'(x^3) \cdot 3x^2}{g'(x^5) \cdot 5x^4} \] 4. **Simplify \( \frac{dy}{dz} \)**: \[ \frac{dy}{dz} = \frac{3f'(x^3)}{5g'(x^5)} \cdot \frac{x^2}{x^4} = \frac{3f'(x^3)}{5g'(x^5)} \cdot \frac{1}{x^2} \] 5. **Substitute \( f'(x) \) and \( g'(x) \)**: Given \( f'(x) = \tan x \) and \( g'(x) = \sec x \): \[ f'(x^3) = \tan(x^3) \quad \text{and} \quad g'(x^5) = \sec(x^5) \] Thus, \[ \frac{dy}{dz} = \frac{3 \tan(x^3)}{5 \sec(x^5)} \cdot \frac{1}{x^2} \] 6. **Find the limit**: Now we need to find: \[ \lim_{x \to 0} \frac{dy/dz}{x} = \lim_{x \to 0} \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^2} \cdot \frac{1}{x} \] Simplifying this gives: \[ = \lim_{x \to 0} \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^3} \] 7. **Evaluate the limit**: As \( x \to 0 \), \( \tan(x^3) \approx x^3 \) and \( \sec(x^5) \approx 1 \): \[ \lim_{x \to 0} \frac{3 \tan(x^3)}{5 \sec(x^5) \cdot x^3} = \lim_{x \to 0} \frac{3x^3}{5 \cdot 1 \cdot x^3} = \frac{3}{5} \] ### Final Answer: \[ \lim_{x \to 0} \frac{dy/dz}{x} = \frac{3}{5} \]

To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{dy/dz}{x} \] where \( y = f(x^3) \) and \( z = g(x^5) \) with \( f'(x) = \tan x \) and \( g'(x) = \sec x \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (|x|)/(x) , is

The value of lim_(xrarr0) (a^x-b^x)/(x) ,is

lim_(xrarr0)x sec x

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

If f(x+2)=3x+11 and g(f(x))=2x, find the value of g(5).

lim_(xrarr0) (tan 4x)/(tan 2x)

Value of limit lim_(xrarr0^(+))x^(x^(x)).ln(x) is