Home
Class 12
MATHS
Let g: RvecR be a differentiable functio...

Let `g: RvecR` be a differentiable function satisfying `g(x)=g(y)g(x-y)AAx , y in R` and `g^(prime)(0)=aa n dg^(prime)(3)=bdot` Then find the value of `g^(prime)(-3)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'(-3) \) given the differentiable function \( g \) that satisfies the equation \( g(x) = g(y) g(x-y) \) for all \( x, y \in \mathbb{R} \), along with the conditions \( g'(0) = a \) and \( g'(3) = b \). ### Step-by-Step Solution: 1. **Start with the functional equation**: \[ g(x) = g(y) g(x-y) \] 2. **Differentiate both sides with respect to \( x \)** (treating \( y \) as a constant): \[ g'(x) = g(y) g'(x-y) \] 3. **Set \( y = x \)**: \[ g'(x) = g(x) g'(0) \] Since \( g'(0) = a \), we can rewrite this as: \[ g'(x) = g(x) a \] 4. **Rearranging gives us**: \[ \frac{g'(x)}{g(x)} = a \] 5. **Integrate both sides**: \[ \int \frac{g'(x)}{g(x)} \, dx = \int a \, dx \] This leads to: \[ \ln |g(x)| = ax + C \] where \( C \) is a constant. 6. **Exponentiating both sides** gives us: \[ g(x) = e^{ax + C} = e^C e^{ax} \] Let \( e^C = k \), then: \[ g(x) = k e^{ax} \] 7. **Finding \( g(0) \)**: \[ g(0) = k e^{0} = k \] 8. **Using the functional equation again with \( x = 0 \)**: \[ g(0) = g(0) g(0) \Rightarrow k = k^2 \] This implies \( k = 0 \) or \( k = 1 \). Since \( g'(0) = a \) and cannot be zero, we have \( k = 1 \): \[ g(0) = 1 \] 9. **Thus, we have**: \[ g(x) = e^{ax} \] 10. **Now differentiate \( g(x) \)**: \[ g'(x) = a e^{ax} \] 11. **Find \( g'(-3) \)**: \[ g'(-3) = a e^{-3a} \] 12. **Using the given condition \( g'(3) = b \)**: \[ g'(3) = a e^{3a} = b \] From this, we can express \( e^{3a} \): \[ e^{3a} = \frac{b}{a} \] 13. **Substituting back into \( g'(-3) \)**: \[ g'(-3) = a e^{-3a} = a \cdot \frac{1}{e^{3a}} = a \cdot \frac{a}{b} = \frac{a^2}{b} \] ### Final Result: \[ g'(-3) = \frac{a^2}{b} \]

To solve the problem, we need to find \( g'(-3) \) given the differentiable function \( g \) that satisfies the equation \( g(x) = g(y) g(x-y) \) for all \( x, y \in \mathbb{R} \), along with the conditions \( g'(0) = a \) and \( g'(3) = b \). ### Step-by-Step Solution: 1. **Start with the functional equation**: \[ g(x) = g(y) g(x-y) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g(x) be a polynomial function satisfying g(x).g(y) = g(x) + g(y) + g(xy) -2 for all x, y in R and g(1) != 1 . If g(3) = 10 then g(5) equals

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)4f(x_0),g^(prime)(x_0)=-7g(x_0), then the value of g^(prime)(1) is ________

Let f(x)a n dg(x) be two differentiable functions in R a n d f(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

Let f(x)a n dg(x) be two differentiable functions in Ra n df(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot