Home
Class 12
MATHS
If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in ...

If `f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2,` then find `f(x)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given functional equation: \[ f\left(\frac{x + 2y}{3}\right) = \frac{f(x) + 2f(y)}{3} \] We also know that \( f'(0) = 1 \) and \( f(0) = 2 \). We need to find the function \( f(x) \). ### Step 1: Analyze the Functional Equation The functional equation resembles the section formula, which suggests that \( f(x) \) could be a linear function. We assume a linear form for \( f(x) \): \[ f(x) = ax + b \] ### Step 2: Substitute into the Functional Equation Substituting \( f(x) = ax + b \) into the functional equation: \[ f\left(\frac{x + 2y}{3}\right) = a\left(\frac{x + 2y}{3}\right) + b = \frac{ax + 2ay}{3} + b \] Now, we compute the right-hand side: \[ \frac{f(x) + 2f(y)}{3} = \frac{(ax + b) + 2(ay + b)}{3} = \frac{ax + b + 2ay + 2b}{3} = \frac{ax + 2ay + 3b}{3} \] ### Step 3: Set Both Sides Equal Now we set both sides of the equation equal to each other: \[ \frac{ax + 2ay}{3} + b = \frac{ax + 2ay + 3b}{3} \] ### Step 4: Simplify the Equation Multiplying through by 3 to eliminate the denominator gives: \[ ax + 2ay + 3b = ax + 2ay + 3b \] This equation holds true for all \( x \) and \( y \), confirming that our assumption of \( f(x) \) being linear is valid. ### Step 5: Use Given Conditions We need to determine the constants \( a \) and \( b \) using the conditions \( f'(0) = 1 \) and \( f(0) = 2 \). From the linear function \( f(x) = ax + b \): 1. **Finding \( b \)**: \[ f(0) = b = 2 \] 2. **Finding \( a \)**: The derivative \( f'(x) = a \). Given \( f'(0) = 1 \): \[ a = 1 \] ### Step 6: Write the Final Function Now substituting \( a \) and \( b \) back into the linear function: \[ f(x) = 1 \cdot x + 2 = x + 2 \] ### Conclusion Thus, the required function is: \[ f(x) = x + 2 \]

To solve the problem, we start with the given functional equation: \[ f\left(\frac{x + 2y}{3}\right) = \frac{f(x) + 2f(y)}{3} \] We also know that \( f'(0) = 1 \) and \( f(0) = 2 \). We need to find the function \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a function satisfying f(x)-f(y)=(y^y)/(x^x)f((x^x)/(y^y))AAx , y in R^*"and"f^(prime)(1)=1 , then find f(x)

If f(x) satisfies the relation f((5x-3y)/2)=(5f(x)-3f(y))/2AAx ,y in R , and f(0)=3a n df^(prime)(0)=2, then the period of "sin"(f(x)) is (a) 2pi (b) pi (c) 3pi (d) 4pi

If f(x) satisfies the relation f((5x-3y)/2)=(5f(x)-3f(y))/2AAx ,y in R , and f(0)=3a n df^(prime)(0)=2, then the period of "sin"(f(x)) is 2pi (b) pi (c) 3pi (d) 4pi

If f(x) satisfies the relation f((5x-3y)/2)=(5f(x)-3f(y))/2AAx ,y in R , and f(0)=3a n df^(prime)(0)=2, then the period of "sin"(f(x)) is 2pi (b) pi (c) 3pi (d) 4pi

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot

y=f(x) , where f satisfies the relation f(x+y)=2f(x)+x y(y)+ysqrt(f(x))AAx , y in Ra n df^(prime)(0)=0. Then f(6) is equal of f(-3) is ________

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=