Home
Class 12
MATHS
Let y be an implicit function of x defi...

Let y be an implicit function of x defined by `x^(2x)-2x^(x) cot y-1=0`. Then y' (1) equals

A

-1

B

1

C

log 2

D

`-log 2

Text Solution

Verified by Experts

`x^(2x)-2x^(x)cot y-1=0" (i)"`
Now at x=1,
`1-2 cot y-1=0rArrcot y =0 rArry=(pi)/(2)`
Now differentiating (i) w.r.t. x, we get
`2x^(2x)(1+log x)-2[x^(x)(-cosec^(2)y)(dy)/(dx)+cot x^(2)(1+log x)]=0`
`"Now at "(1,pi//2)`,
`2(1+log 1)-2[1(-1)((dy)/(dx))_(((1,pi//2)))+0]=0`
`rArr" "2+2((dy)/(dx))_(((1,pi//2)))=0`
`((dy)/(dx))_(((1,pi//2)))=-1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let y be an implicit function of x defined by x^(2x)-2x^xcot y-1=0. Then y '(1) equals: 1 b. log2 c. -log2 d. -1

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let a function of 2 variables be defined by g(x, y)=xy+3xy^(2)-(x-y^(2)) , what is the value of g(2, -1) ?

Let a function of 2 variables be defined by h(x, y)=x^(2)+3xy-(y-x) , what is the value of h(5, 4) ?

Let emptyset be an operation on x and y defined as x emptysety=(x^(-2)+y^(-2))/(x^(-1)+y^(-1)) . Find the value of (1emptyset1)emptyset3 ?

If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t in R . Then f(x) is discontinuous at

Write explicit functions of y defined by the following equations and also find the domains of definitions of the given implicit functions: x+|y|=2y (b) e^y-e^(-y)=2x (c) 10^x+10^y=10 (d) x^2-sin^(-1)y=pi/2

Let f(x, y) be a periodic function satisfying f(x, y) = f(2x + 2y, 2y-2x) for all x, y; Define g(x) = f(2^x,0) . Show that g(x) is a periodic function with period 12.

If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1) with y(0)=1 , then lim_(xrarroo)y(x) equals

If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1) with y(0)=1 , then lim_(xrarroo)y(x) equals