Home
Class 12
MATHS
Let f:""(1,""1)vecR be a differentiable ...

Let `f:""(1,""1)vecR` be a differentiable functio with `f(0)""=""-1""a n d""f'(0)""=""1` . Let `g(x)""=""[f(2f(x)""+""2)]^2` . Then `g'(0)""=` (1) `4` (2) 0 (3) `2` (4) -4

A

-2

B

4

C

-4

D

0

Text Solution

AI Generated Solution

To find \( g'(0) \) for the function \( g(x) = [f(2f(x) + 2)]^2 \), we will follow these steps: ### Step 1: Differentiate \( g(x) \) Using the chain rule, we differentiate \( g(x) \): \[ g'(x) = 2[f(2f(x) + 2)] \cdot f'(2f(x) + 2) \cdot (2f'(x)) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f:""(-1,""1) rarr R be a differentiable function with f(0)""=""-1" "a n d" "f'(0)""=""1 . Let g(x)""=""[f(2f(x)""+""2)]^2 . Then g'(0)""= (1) -4 (2) 0 (3) 2 (4) 4

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

STATEMENT - 1 : Let f be a twice differentiable function such that f'(x) = g(x) and f''(x) = - f (x) . If h'(x) = [f(x)]^(2) + [g (x)]^(2) , h(1) = 8 and h (0) =2 Rightarrow h(2) =14 and STATEMENT - 2 : h''(x)=0

If f(x), g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6, f(2)=3, g(2)=9, then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

If f and g are differentiable functions in [0, 1] satisfying f(0)""=""2""=g(1),g(0)""=""0 and f(1)""=""6 , then for some c in ]0,""1[ (1) 2f^'(c)""=g^'(c) (2) 2f^'(c)""=""3g^'(c) (3) f^'(c)""=g^'(c) (4) f'(c)""=""2g'(c)

If f and g are differentiable functions in [0, 1] satisfying f(0)""=""2""=g(1),g(0)""=""0 and f(1)""=""6 , then for some c in ]0,""1[ (1) 2f^'(c)""=g^'(c) (2) 2f^'(c)""=""3g^'(c) (3) f^'(c)""=g^'(c) (4) f'(c)""=""2g'(c)

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2