Home
Class 12
MATHS
If y="sec"(tan^(-1)x), then (dy)/(dx) at...

If `y="sec"(tan^(-1)x),` then `(dy)/(dx)` at `x=1` is equal to: `1/(sqrt(2))` (b) `1/2` (c) 1 (d) `sqrt(2)`

A

-2

B

4

C

-4

D

0

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sec(\tan^{-1} x)\) at \(x = 1\), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \sec(\tan^{-1} x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

If x=sqrt(1-y^2) , then (dy)/(dx)=

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (a) (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) (c) 1/(2xsqrt(x^2-1)) (d) none of these

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)