Home
Class 12
MATHS
Let f:(0,oo)->R be a differentiable func...

Let `f:(0,oo)->R` be a differentiable function such that `f'(x)=2-f(x)/x` for all `x in (0,oo)` and `f(1)=1`, then f(x) is

A

`(3)/(1+9x^(3))`

B

`(9)/(1+9x^(3))`

C

`(3xsqrt(x))/(1-9x^(3))`

D

`(3x)/(1-9x^(3))`

Text Solution

AI Generated Solution

To solve the problem, we start with the given differential equation and the initial condition. ### Step 1: Write down the differential equation We are given: \[ f'(x) = 2 - \frac{f(x)}{x} \] and the initial condition: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Numerical Value Type|45 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

If f:R->R is a twice differentiable function such that f''(x) > 0 for all x in R, and f(1/2)=1/2 and f(1)=1, then

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f(x) is a differentiable function on x in R , such that f(x+y)=f(x)f(y) for all x, y in R where f(0) ne 0 . If f(5)=10, f'(0)=0 , then the value of f'(5) is equal to

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:[1,oo] be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,