Home
Class 12
MATHS
If veca.veci=veca.(hati+hatj)=veca.(hati...

If `veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk)` . Then find the unit vector `veca`.

Text Solution

Verified by Experts

Let `veca=xhati+yhatj+zhatk`
then `veca.hati=(xhati+yhatj+zhatk).hati=x and veca. (hati+hatj)=x+y`
`and veca.(hati+hatj=hatk)=x+y+z("given that" x=x+y=x+y+z)`
now, `x=x+y Rightarrow y =0 and x+y =x+y+z Rightarrow z=0`
Hence, x =1 ( sicne `veca` is a unit vector)
`veca=veci`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If vecA= 6hati- 6hatj+5hatk and vecB= hati+ 2hatj-hatk , then find a unit vector parallel to the resultant of veca & vecB .

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

Find the resultant of vectors veca=hati-hatj+2hatk and vecb=hati+2hatj-4hatk . Find the unit vector in the direction of the resultant vector.

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If veca=5hati-hatj-3hatk and vecb=hati+3hatj-5hatk , then show that the vectors veca+vecb and veca-vecb are perpendicular.

If veca=3hati+4hatj-5hatk and vecb=7hati-3hatj+6hatk find a unit vector along (veca+vecb)xx(veca-vecb) .

(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .