Home
Class 12
MATHS
In isosceles triangle ABC |vec(AB)|=|vec...

In isosceles triangle ABC `|vec(AB)|=|vec(BC)|=8` a point E divides AB internally in the ratio 1:3, then find the angle between `vec(CE) and vec(CA)` ( where `|vec(CA)|= 12`)

Text Solution

Verified by Experts

`|vecc|=12and |vecb|=|vecb-vecc|=8`
`b^2=b^(2)+c^(2)-vecb.bvecc`
`vecb.vecc=72`
`costheta(vecc.(vecc-((vecb)/(4))))/(|vecc||vecc-vecb/4|)=(vecc.vecc-(vecc.vecb)/4)/(12|vecc-vecb/4|)=(144-18)/(12|vecc-vecb/4|)`
`|vecc-vecb/4|^(-2)=|vecc|^(2)+|vecb|^(2)/16-(vecb.vecc)/2=144+4-36=112`
`cos theta=21/(2xxsqrt112)=21/(2xx4sqrt7)=(3sqrt7)/8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

In the isosceles triangle ABC, |vec(AB)| = |vec(BC)| = 8 ,a point E divide AB internally in the ratio 1:3 , then the cosine of the angle between vec(CE) and vec(CA) is (where |vec(CA)| = 12 )

In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divides A B internally in the ratio 1:3, then find the angle between vec C Ea n d vec C A(w h e r e| vec C A|=12)dot

If |vec(A)+vec(B)|=|vec(A)-vec(B)| , then find the angle between vec(A) and vec(B)

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .

If vec(A)=vec(B)+vec(C ) , and the magnitudes of vec(A) , vec(B) , vec(C ) are 5,4, and 3 units, then the angle between vec(A) and vec(C ) is

If | vec a|=8,| vec b|=3 and | vec a x vec b|=12 , find the angle between vec a and vec bdot

If | vec a|=sqrt(3)\ | vec b|=2\ \ and vec a.vec b=sqrt(3,)\ find the angle between vec a and vec b

Prove that abs(vec(a) times vec(b))=(vec(a)*vec(b))tantheta , where theta is the angle between vec(a) and vec(b) .

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot