Home
Class 12
MATHS
hatu and hat v are two non-collinear uni...

`hatu and hat v` are two non-collinear unit vectors such that `|(hatu+hatv)/2+hatuxxvecv|=1`. Prove that `|hatuxxhatv|=|(hatu-hatv)/2|`

Text Solution

Verified by Experts

Given that `|(hatu+hatv)/2+hatuxxhatv|=1`
` |(hatu+hatv)/2+hatuxxhatv|^(2)=1`
`(2+2costheta)/4+sin^(2)theta=1`
`cos^(2)(theta /2)=cos^(2)theta`
`theta=npi+-theta/2,n inZ`
`(2pi)/3`
`|hatuxxhatv|=sin((2pi)/3)=sin (pi/3)=|(hatu-hatv)/2|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

ua n dv are two non-collinear unit vectors such that |( hat u+ hat v)/2+ hat uxx hat v|=1. Prove that | hat uxx hat v|=|( hat u- hat v)/2|dot

The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors hat(a), hat(b), hat(c) such that hat(a)*hat(b)=hat(b)*hat(c)=hat(c)*hat(a)=(1)/(2). Then, the volume of the parallelopiped is

Let hatu, hatv, hatw be three unit vectors such that hatu+hatv+hatw=hata, hata.hatu=3/2, hata.hatv=7/4 & |hata|=2 , then

If u and v are two non-collinear unit vectors such that |vecu × vecv| = ∣ ​ (vecu − vecv) /2 ​ ∣ ​ , then the value of ∣ vecu ×( vecu × vecv) ∣ ^2 is equal to

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .

If alpha and beta are two perpendicular unit vectors such that x=hat(beta)-(alphatimesx) , then the value of 4|x|^(2) is.

If a, b and c are non-collinear unit vectors also b, c are non-collinear and 2atimes(btimesc)=b+c , then

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

If hat a and hatb are two unit vectors inclined at an angle theta , then sin(theta/2)

If hat a and hat b are unit vectors inclined at an angle theta , then prove that costheta/2=1/2| hat a+ hat b| tantheta/2=1/2|( hat a- hat b)/( hat a+ hat b)|