Home
Class 12
MATHS
Prove that [veclvecmvecn][vecavecbvecc]=...

Prove that `[veclvecmvecn][vecavecbvecc]=|{:(vecl.veca,vecl.vecb,vecl.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|`

Text Solution

Verified by Experts

Let `vecl=l_(1)hati+l_(2)hatj+l_(3)hatk,vecm=m_(1)hati+m_(2)hatj+m_(3)hatk andvecn=n_(1)hati+n_(2)hatj+n_(3)hatk`
`veca=a_(1)hati+a_(2)hatj=a_(3)hatk,vecb=b_(1)hati+b_(2)hatj+b_(3)hatk nandvecc=c_(1)hati+c_(2)hatj+c_(3)hatk`
`vecl.veca=l_(1)a_(1)+l_(2)a_(2)+l_(3)a_(3)=suml_(1)a_(1)`
similarly `vecl.vecb=suml_(1)b_(1).etc.`
`[veclvecmvecn][vecavecbvecc]=|{:(l_(1),l_(2),l_(3)),(m_(1),m_(2),m_(3)),(n_(1),n_(2),n_(3)):}||{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|`
`=|{:(suml_(1)a_(1),suml_(1)b_(1),suml_(1)c_(1)),(summ_(1)a_(1),summ_(2)b_(1),summ_(1)c_(1)),(sumn_(1)a_(1),sumn_(1)b_(1),sumn_(1)c_(1)):}|`
`=|{:(vecl.veca,vecl.vecb,veca.vecc),(vecm.veca,vecm.vecb,vecm.vecc),(vecn.veca,vecn.vecb,vecn.vecc):}|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Show that : [vecl vecm vecn] [veca vecb vecc]=|(vecl.veca, vecl.vecb, vecl.vecc),(vecm.veca, vecm.vecb, vecm.vecc),(vecn.veca, vecn.vecb, vecn.vecc)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vecl vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vec vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0