Home
Class 12
MATHS
If vec u , vec v and vec w are three no...

If ` vec u , vec v and vec w` are three non-coplanar vectors, then prove that `( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w`

Text Solution

Verified by Experts

`(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)=)(vecu+vecv-vecw).(vecuxxvecv-vecuxxvecw-vecvxxvecv+vecvxxvecw)`
`=(vecu+vecv-vecw).(vecuxxvecv-vecuxxvecw+vecvxxvecw)`
`= 0-0+vecu.(vecvxxvecw)+0-vecv.(vecuxxvecw)+0-vecw.(vecuxxvecv)+0-0`
`[vecu vecv vecw]+[vecv vecw vecu] - [vecwvecuvecv]=vecu.(vecvxxvecw)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vec u , vec v and vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot [( vec u- vec v)xx( vec v- vec w)] = vec u dot (vec v xx vec w)

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three non coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx) vec a+ vec c)] equals [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

Prove that ( vec a- vec b)dot{( vec b- vec c)xx( vec c- vec a)}=0

Prove that: ( vec a- vec b)*{( vec b- vec c)xx(vec c- vec a)}"=0

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2