Home
Class 12
MATHS
If [ veca vecbvecc]=2 , then find the va...

If `[ veca vecbvecc]=2` , then find the value of `[(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]`

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the expression \([( \vec{a} + 2\vec{b} - \vec{c}) \cdot ( \vec{a} - \vec{b}) \times ( \vec{a} - \vec{b} - \vec{c})]\) given that \([\vec{a} \, \vec{b} \, \vec{c}] = 2\). ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product:** The scalar triple product \([\vec{a} \, \vec{b} \, \vec{c}]\) can be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). Given that this value is 2, we can use this information in our calculations. 2. **Rewrite the Expression:** ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca=hati+hatj+hatk,hatb=hati-hatj+hatk,vecc=hati+2hatj-hatk , then find the value of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}|

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is