Home
Class 12
MATHS
Prove that: [vecaxxvecb vecb xx vecc vec...

Prove that: `[vecaxxvecb vecb xx vecc veccxxveca]=[vecavecbvecc]^2`

Text Solution

AI Generated Solution

To prove the equation \([ \vec{A} \times \vec{B}, \vec{B} \times \vec{C}, \vec{C} \times \vec{A} ] = [ \vec{A}, \vec{B}, \vec{C} ]^2\), we will follow these steps: ### Step 1: Understand the Scalar Triple Product The scalar triple product of three vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) is given by: \[ [\vec{A}, \vec{B}, \vec{C}] = \vec{A} \cdot (\vec{B} \times \vec{C}) \] This represents the volume of the parallelepiped formed by the three vectors. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If [vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda is equal to (A) 1 (B) 2 (C) 3 (D) 0

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Three points whose position vectors are veca,vecb,vecc will be collinear if (A) lamdaveca+muvecb=(lamda+mu)vecc (B) vecaxxvecb+vecbxxvecc+veccxxveca=0 (C) [veca vecb vecc]=0 (D) none of these

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If veca,vecb,vecc and vecd are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that (|vecaxxvecb+vecb xxvecd+vecd xxveca|)/((vecb-veca).(vecd-veca))+(|vecbxxvecc+veccxxvecd+vecd+vecd xx vecb|)/((vecb-vecc).(vecd-vecc))