Home
Class 12
MATHS
If vecb and vecc are two non-collinear s...

If `vecb and vecc` are two non-collinear such that `veca ||(vecbxxvecc)`. Then prove that `(vecaxxvecb).(vecaxxvecc)` is equal to `|veca|^(2)(vecb.vecc)` `

Text Solution

Verified by Experts

`veca||(vecbxxvecc)`
`veca=lambda(vecbxxvecc)and veca=vecabotvecband vecabotvecc`
`Now, (vecaxxvecb).(vecaxxvecc)=|{:(veca.a,veca.vecc),(vecb.veca,vecb.vecc):}|`
`=|{:(veca.veca,0),(0,vecb.vecc):}|=|veca|^(2)(vecb.vecc)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=