Home
Class 12
MATHS
If veca,vecb and vecc are three non-copl...

If `veca,vecb and vecc` are three non-coplannar vectors, then prove that `(|hataxx(hatbxxhatc)|)/sinA=(|hatbxx(hatcxxhata)|)/sinB=(|hatcxx(hataxxhatb)|)/sin C = (prod|hata xx(hatbxx hatc)|)/(| sum hatn_(1) sinalpha cosbeta cosgamma|)`

Text Solution

AI Generated Solution

To prove the given condition involving three non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will follow a systematic approach using vector properties and the sine rule. ### Step-by-step Solution: 1. **Understanding the Sine Rule**: The sine rule states that for any triangle with sides \(a\), \(b\), and \(c\) opposite to angles \(A\), \(B\), and \(C\) respectively: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If vec a , vec ba n d vec c are any three non-coplanar vectors, then prove that points are collinear: veca+ vecb+vecc , 4veca+3vecb ,10veca+7vec b-2vecc .

If hata, hatb, hatc are three units vectors such that hatb and hatc are non-parallel and hataxx(hatbxxhatc)=1//2hatb then the angle between hata and hatc is

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb,vecc are three non coplanar vectors then the vector equation vecr=(1-p-q)veca+pvecb+qvecc are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

Statement 1 : Let A(veca), B(vecb) and C(vecc) be three points such that veca = 2hati +hatk , vecb = 3hati -hatj +3hatk and vecc =-hati +7hatj -5hatk . Then OABC is tetrahedron. Statement 2 : Let A(veca) , B(vecb) and C(vecc) be three points such that vectors veca, vecb and vecc are non-coplanar. Then OABC is a tetrahedron, where O is the origin.

VECTOR ALGEBRA | LINEAR COMBINATION LINEAR INDEPENDENCE AND LINEAR DEPENDENCE | Definition and physical interpretation: Linear Combination, Linear Combination: Linear Independence And Linear Dependence, Linearly Independent, Linearly Dependent, Theorem 1: If veca and vecb are two non collinear vectors; then every vector vecr coplanar with veca and vecb can be expressed in one and only one way as a linear combination: x veca +y vecb ., Theorem 2: If veca , vecb and vecc are non coplanar vectors; then any vector vecr can be expressed as linear combination: x veca +y vecb +z vecc , Theorem 3:If vectors veca , vecb and vecc are coplanar then det( veca vecb vecc ) = 0, Examples: Prove that the segment joining the middle points of two non parallel sides of a trapezium is parallel to the parallel sides and half of their sum., Components of a vector in terms of coordinates of its end points