Home
Class 12
MATHS
If vecr.veca=0, vecr.vecb=1and [vecr ve...

If `vecr.veca=0, vecr.vecb=1and [vecr vecavecb]=1,veca.vecbne0,(veca.vecb)^(2)-|veca|^(2)|vecb|^(2)=1,` then find `vecr` in terms of `veca and vecb`.

Text Solution

AI Generated Solution

To solve the problem step by step, we will analyze the given conditions and derive the expression for the vector \( \vec{r} \) in terms of \( \vec{a} \) and \( \vec{b} \). ### Step 1: Understand the given conditions We have the following conditions: 1. \( \vec{r} \cdot \vec{a} = 0 \) (This implies that \( \vec{r} \) is perpendicular to \( \vec{a} \)) 2. \( \vec{r} \cdot \vec{b} = 1 \) 3. \( [\vec{r}, \vec{a}, \vec{b}] = 1 \) (This indicates that the scalar triple product is equal to 1) 4. \( \vec{a} \cdot \vec{b} \neq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,vecanelambdavecb and veca is not perpendicular to vecb , then find vecr in terms of veca and vecb .

vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,vecanevec0,vecbnevec0,vecanelambdavecb and veca is not perpendicular to vecb , then find vecr in terms of veca and vecb .

If |veca|=8,|vecb| = 3 and |veca xxvecb|=12 , find veca.vecb

Find vector vecr if vecr.veca=m and vecrxxvecb=vecc, where veca.vecb!=0

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

If vecasxxvecb=0 and veca.vecb=0 then (A) veca_|_vecb (B) veca||vecb (C) veca=0 and vecb=0 (D) veca=0 or vecb=0

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|