Home
Class 12
MATHS
If vector vecx satisfying vecx xx veca+ ...

If vector `vecx` satisfying `vecx xx veca+ (vecx.vecb)vecc =vecd` is given by `vecx = lambda veca + veca xx (vecaxx(vecd xx vecc))/((veca.vecc)|veca|^(2))`, then find out the value of `lambda`

Text Solution

AI Generated Solution

To solve the problem, we need to manipulate the given vector equation and compare it with the provided expression for \(\vec{x}\). Let's go through the steps carefully. ### Given: 1. The equation: \[ \vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b}) \vec{c} = \vec{d} \] 2. The expression for \(\vec{x}\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)