Home
Class 12
MATHS
Prove that vec R+([ vec Rdot( vecbetaxx...

Prove that ` vec R+([ vec Rdot( vecbetaxx( vecbetaxx vecalpha))] vecalpha)/(| vecalphaxx vecbeta|^2)+([ vec Rdot( vecalphaxx( vecalphaxx vecbeta))] vecbeta)/(| vecalphaxx vecbeta|^2)=([ vec R vecalpha vecbeta]( vecalphaxx vecbeta))/(| vecalphaxx vecbeta|^2)`

Text Solution

Verified by Experts

`vecalpha , vecbeta and vecalpha xx vecbeta` are three non-coplanar vectors. Any vector `vecR` can be respresented as a linear combination of these vectors. Thus ,
`vecR=k_(1)vecalpha+k_(2)vecbeta+k_(3)(vecalphaxxvecbeta)`
Take dot product of (i) with `(vecalpha xx vec beta)` . we have
`vecR.(vecalphaxxvecbeta)=k_(3)(vecalpha xxvecbeta)=k_(3)|vecalphaxxvecbeta|^(2)`
`k_(3)=(vecR.(vecalphaxxvecbeta))/(|vecalphaxxvecbeta|^(2))=([vecRvecalphavecbeta])/(|vecalphaxxvecbeta|^(2))`
Take dot product of (i) with `vecalphaxx(vecalphaxxvecbeta)` we have
`vecR.(vecalphaxx(vecalphaxxvecbeta))=k_(2)(vecalphaxx(vecalphaxxvecbeta)).vecbeta`
`= k_(2)[(vecalpha.vecbeta)vecalpha-(vecalpha.vecalpha)vecbeta].vecbeta=k_(2)[(vecalpha.vecbeta)^(2)-|vecalpha|^(2)|vecbeta|^(2)]`
`=-k_(2)|vecalphaxxvecbeta|^(2)`
`k_(2)=(-[vecR.(vecalphaxx(vecalphaxxvecbeta))])/(|vecalphaxxvecbeta|^(2)) " simiarly "k_(1)=-([vecR.(vecbetaxx(vecbetaxxvecalpha))])/(|vecalphaxx vecbeta|^(2))`
`Rightarrow vecR=(-[vecR.[vecbetaxx(vecbetaxxvecalpha))]vecalpha)/(|vecalphaxxvecbeta|^(2))-([vecR.(vecalphaxx(vecalphaxxvecbeta))]vecbeta)/(|vecalphaxxvecbeta|^(2))+(([vecR.(vecalphaxxvecbeta))](vecalphaxxvecbeta))/(|vecalpha xx vecbeta|^(2))`
`Rightarrow vecR=(-[vecR.[vecbetaxx(vecbetaxxvecalpha))]vecalpha)/(|vecalphaxxvecbeta|^(2))-([vecR.(vecalphaxx(vecalphaxxvecbeta))]vecbeta)/(|vecalphaxxvecbeta|^(2))+(([vecR.(vecalphaxxvecbeta))](vecalphaxxvecbeta))/(|vecalpha xx vecbeta|^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta).(vecalphaxx vecgamma) equals to a. | vecalpha|^2( vecbeta.vecgamma) b. | vecbeta|^2( vecgamma. vecalpha) c. | vecgamma|^2( vecalpha. vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvecgamma)= (A) |vecalpha|^2(vecbeta.vecgamma) (B) |vecbeta|^2(vecgamma.vecalpha) (C) |vecgamma|^2(vecalpha.vecbeta) (D) |vecalpha||vecbeta||vecgamma|

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

vecalpha and vecbeta are two unit vectos and vecr is a vector such that vecr.vecalpha=0 and sqrt(2)(vecrxxvecbeta)=3(vecrxxvecalpha)-vecbeta , then (1)/(|vecr|^(2)) equal

Findthe value of vecalphaxx(vecbetaxxvecgamma) , where, vecalpha=2veci-10vecj+2veck, vecbeta=3veci+vecj+2veck, vecgamma =2veci+vecj+3veck

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these