Home
Class 12
MATHS
Let veca,vecb and vecc be a set of non- ...

Let `veca,vecb and vecc` be a set of non- coplanar vectors and `veca'vecb' and vecc'` be its reciprocal set.
prove that `veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])`

Text Solution

AI Generated Solution

To prove the relationships between the vectors \( \vec{a}, \vec{b}, \vec{c} \) and their reciprocal set \( \vec{a}', \vec{b}', \vec{c}' \), we will follow a structured approach based on the properties of vector products and scalar triple products. ### Step-by-Step Solution: 1. **Understanding the Reciprocal Set**: The reciprocal set of vectors \( \vec{a}', \vec{b}', \vec{c}' \) is defined as follows: \[ \vec{a}' = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{b}' = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{c}' = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb and vecc be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc ii. vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'

Prove that veca\'.(vecb+vecc)+vecb\'.(vecc+veca)+vecc\'.(veca+vecb)=0

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=