Home
Class 12
MATHS
If veca,vecb, vecc and veca',vecb',vecc'...

If `veca,vecb, vecc and veca',vecb',vecc'` are reciprocal system of vectors, then prove that `veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])`

Text Solution

Verified by Experts

`veca'xxvecb'=((vecbxxvecc)xx(veccxxveca))/([vecavecbvecc]^(2))=({(vecbxxvecc).veca}vecc-{(vecbxxvecc).vecc}veca)/([vecavecbvecc]^(2))=([vecb vecc veca]vecc)/([vecabvecbvecc]^(2))=([veca vecb vecc]vecc)/([veca vecb vecc]^(2))=vecc/([veca vecb vecc])`
similarly, `vecb'xxvecc'=veca/([vecaxxvecbxxvecc])andvecc'xxveca' = vecb/([vecavecbvecc])`
Adding `veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc and veca\', vecb\', vecc\' are reciprocal system of vectors prove that vecaxxveca'+vecbxxvecb'+veccxxvecc\'=vec0

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

Prove that: [veca+vecb " "vecb+vecc " "vecc+veca]=2[veca" " vecb" " vecc]

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])