Home
Class 11
MATHS
If veca xx vecb = vecb xx vecc ne 0 whe...

If `veca xx vecb = vecb xx vecc ne 0 ` where `veca , vecb and vecc` are coplanar vectors, then for some scalar k prove that `veca+vecc = kvecb`.

Text Solution

AI Generated Solution

To prove that \(\vec{a} + \vec{c} = k \vec{b}\) for some scalar \(k\), given that \(\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0\) and that \(\vec{a}, \vec{b}, \vec{c}\) are coplanar vectors, we can follow these steps: ### Step 1: Start with the given equation We have: \[ \vec{a} \times \vec{b} = \vec{b} \times \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)