Home
Class 11
MATHS
given that veca. vecb = veca.vecc, veca ...

given that `veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca ` is not a zero vector. Show that `vecb=vecc`.

Text Solution

Verified by Experts

we have er`veca. Vecb = veca .vecc.` therefore,
`veca.vecb-veca .vecc = 0 or veca. (vecb -vecc) = 0 `
Therefore, there are three possibilities : (i) ,
(ii) `vecb - vecc = vec0 and (iii) veca` is perpendicu
`vecb - vecc`
Again, `veca xx vecb = veca xx vecc`, therefore, `veca xx vecb - veca xx vecc = vec0`
`or veca xx ( vecb - vecc) = vec0`
Therefore, again there are three posibilities,
`(i) veca= vec0, (ii) vecb - vecc = vec0 and (iii) veca` is parallel to `vecb - vecc`.
now ` veca` is given to be a non-zero vector. therefore, we have the following possibilities left :
`1. vecb -vecc= vec0`
2. `veca` is -perendicular to `vecb - vecc and veca` is parallel to `vecb - vecc`, which is absurd.
Therefore, the only possibility , left is `vecb -vecc = vec0 or vecb = vecc`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]