Home
Class 11
MATHS
Prove that (veca.hati)(vecaxxhati)+(veca...

Prove that `(veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0`

Text Solution

Verified by Experts

Let `veca = a_(1) hati + a_(2)hatj + a_(3) hatk`1, therefore,
`veca. Hati = (a_(1) hati = a_(2) and veca . Hatk = a_(3)`
`and vecaxxhati = (a_(1)hati+a_(2)hat j + a_(3) hatk) xx hati = a_(2)hatk + a_(3) hatj` ,
`(veca . hati ) (vecaxx hati) + (veca . hatj) (veca xx hatj) + (veca. hatk) (veca xx veck)`
`-a_(1)a_(2)hatk + a_(1)a_(3)hatj + a_(1)a_(2) hatk +a_(3)a_(2)hati`
`+a_(3)a_(2) hati -a_(3)a_(1)hati`
`vec0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Assertion: Let veca and vecb be any two vectors (vecaxxhati).(vecbxxhati)+(vecaxxhatj).(vecbxxhatj)+(vecaxxhatk).(vecbxxhatk)=2veca.vecb., Reason: (veca.hati)(vecb.hati)+(veca.hatj)(vecb.hatj)+(veca.hatk)(vecb.hatk)=veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

If veca is any non-zero vector, then (veca.hati)hati+(veca.hatj)hatj+(veca.veck)hatk is equal to …….

If hati xx[(veca-hatj)xxhati]+hatjxx[(veca-hatk)xxhatj]+veckxx[(veca-veci)xxhatk]=0 , then find vector veca .

If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk xx [(veca-hati) xx hatk]=0 and veca=xhati+y hatj+z hatk , then :

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=