Home
Class 11
MATHS
Find the moment of vec F about point (2...

Find the moment of ` vec F` about point (2, -1, 3), where force ` vec F=3 hat i+2 hat j-4 hat k` is acting on point (1, -1, 2).

Text Solution

Verified by Experts

`vecF = 3hati + 2hatj - 4hatk`
A is (1,-1,2) P is ( 2, -1,3)
` vecPA= P.V. of A - P.V. of P`
`= (hati - hatj + 2hatk) - (2hati - hati - jatj + 3hatk)`
`= - hati - hatk`
Required vector moment = `vecPA xx vecF`
`(-hati-hatk) xx ( 3 hati + 2hatj - 4hatk)`
`=|{:(hati,hatj,hatk),(-1, 0 , -1) ,( 3,2,-4):}|`
`2hati- 7hatj - 2hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Find the equation of a line passing through a point (2, -1, 3) and parallel to the line vec r=( hat i+ hat j)+lambda(2 hat i+ hat j-2 hat k)dot

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i+2 hat j- hat k ,\ vec b= hat i- hat j+ hat k

The moment of the force, vec F = 4 hati + 5 hat j - 6 hat k at (2, 0 , - 3) . About the point (2, - 2, -2) is given by

Find the projection of vec b+ vec c on vec a where vec a=2 hat i-\ 2 hat j+\ hat k ,\ vec b=\ hat i+\ 2 hat j-\ 2 hat k and vec c=2 hat i-\ hat j+\ 4 hat k

Find the projection of vec b+ vec c on vec a , where vec a = 2 hat i-2 hat j+ hat k , vec b = hat i+2 hat j-2 hat k and vec c=2 hat i- hat j+4 hat k .

Find the point where line which passes through point (1,2,3) and is parallel to line vec r= hat i+ hat j+2 hat k+lambda( hat i-2 hat j+3 hat k) meets the xy-plane.

Find the distance of the point 2 hat i- hat j-4 hat k from the plane vec rdot((3 hat i-4 hat j+12 hat k)-9=0.

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find the equation of the plane passing through the intersection of the planes vec rdot( hat i+ hat j+ hat k)=\ 6,\ vec rdot\ \ (2 hat i+3 hat j+4 hat k)=\ -5 and the point (1,1,1).

Let the centre of the parallelepiped formed by vec P A= hat i+2 hat j+2 hat k ; vec P B=4 hat i-3 hat j+ hat k ; vec P C=3 hat i+5 hat j- hat k is given by the position vector (7, 6, 2). Then the position vector of the point P is (3,4,1) (b) (6,8,2) (1, 3, 4) (d) (2, 6, 8)