Home
Class 11
MATHS
For non-zero vectors veca, vecb and vecc...

For non-zero vectors `veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc|` holds if and only if

A

`veca.vecb=0 , vecb .vecc=0`

B

`vecb.vecc = 0, vecc, veca =0`

C

`vecc.veca =0, veca,vecb =0`

D

`veca.vecb= vecb.vecc= vecc.veca =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the condition under which the equation \( |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}||\vec{b}||\vec{c}| \) holds true for non-zero vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Understanding the Cross Product**: The cross product \(\vec{a} \times \vec{b}\) results in a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). The magnitude of this vector is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(\theta) \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). **Hint**: Recall that the magnitude of the cross product depends on the sine of the angle between the two vectors. 2. **Dot Product with \(\vec{c}\)**: The dot product of \((\vec{a} \times \vec{b})\) with \(\vec{c}\) can be expressed as: \[ (\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{a} \times \vec{b}||\vec{c}|\cos(\alpha) \] where \(\alpha\) is the angle between the vector \((\vec{a} \times \vec{b})\) and \(\vec{c}\). **Hint**: Remember that the dot product involves the cosine of the angle between the two vectors. 3. **Substituting Magnitudes**: Substituting the magnitude of the cross product into the dot product expression gives: \[ |(\vec{a} \times \vec{b}) \cdot \vec{c}| = ||\vec{a}||\vec{b}||\sin(\theta)|||\vec{c}||\cos(\alpha)| \] **Hint**: This step combines the results from the cross product and the dot product. 4. **Setting Up the Equation**: Now, we set the absolute value of the dot product equal to the product of the magnitudes: \[ ||\vec{a}|| |\vec{b}||\vec{c}||\sin(\theta)||\cos(\alpha)| = |\vec{a}||\vec{b}||\vec{c}| \] **Hint**: This equation shows that the left-hand side must equal the right-hand side. 5. **Simplifying the Equation**: We can simplify this equation by canceling out the common terms: \[ |\sin(\theta)||\cos(\alpha)| = 1 \] **Hint**: This simplification leads to a condition involving sine and cosine. 6. **Analyzing the Conditions**: The equation \( |\sin(\theta)||\cos(\alpha)| = 1 \) can only hold if: - \(|\sin(\theta)| = 1\) (which means \(\theta = \frac{\pi}{2}\), i.e., \(\vec{a}\) and \(\vec{b}\) are perpendicular) - \(|\cos(\alpha)| = 1\) (which means \(\alpha = 0\), i.e., \(\vec{c}\) is parallel to \((\vec{a} \times \vec{b})\)) **Hint**: Consider the geometric implications of sine and cosine being equal to 1. 7. **Conclusion**: Therefore, the condition holds if and only if: - \(\vec{a} \perp \vec{b}\) (i.e., \(\vec{a} \cdot \vec{b} = 0\)) - \(\vec{c}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\) (i.e., \(\vec{c} \cdot \vec{a} = 0\) and \(\vec{c} \cdot \vec{b} = 0\)) Thus, the final answer is: \[ \vec{a} \cdot \vec{b} = 0, \quad \vec{c} \cdot \vec{a} = 0, \quad \vec{c} \cdot \vec{b} = 0 \]

To solve the problem, we need to analyze the condition under which the equation \( |(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}||\vec{b}||\vec{c}| \) holds true for non-zero vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step-by-Step Solution: 1. **Understanding the Cross Product**: The cross product \(\vec{a} \times \vec{b}\) results in a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). The magnitude of this vector is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin(\theta) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. The scalar vecA.(vecB+vecC)xx(vecA+vecB+vecC) equals (A) 0 (B) [vecA v...

    Text Solution

    |

  2. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |ve...

    Text Solution

    |

  3. The volume of he parallelepiped whose sides are given by vec O A=2i...

    Text Solution

    |

  4. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  5. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  6. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  7. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  8. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  9. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  10. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  11. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  12. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  13. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  14. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  15. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  16. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  17. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  18. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  19. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  20. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |