Home
Class 11
MATHS
Let veca,vecb,vecc be three noncolanar v...

Let `veca,vecb,vecc` be three noncolanar vectors and `vecp,vecq,vecr` are vectors defined by the relations` vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc])` then the value of the expression `(veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr`. is equal to (A) 0 (B) 1 (C) 2 (D) 3

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}\) given the definitions of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\). 1. **Given Definitions**: - \(\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\) Here, \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). 2. **Evaluate Each Term**: - **First Term**: \((\vec{a} + \vec{b}) \cdot \vec{p}\) \[ = (\vec{a} + \vec{b}) \cdot \left(\frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] \[ = \frac{(\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c})}{[\vec{a}, \vec{b}, \vec{c}]} \] Using the property of the scalar triple product, we know that \((\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c})\). The second term is zero because the dot product of a vector with itself crossed with another vector is zero. \[ = \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{[\vec{a}, \vec{b}, \vec{c}]} \] This is equal to 1. - **Second Term**: \((\vec{b} + \vec{c}) \cdot \vec{q}\) \[ = (\vec{b} + \vec{c}) \cdot \left(\frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] \[ = \frac{(\vec{b} + \vec{c}) \cdot (\vec{c} \times \vec{a})}{[\vec{a}, \vec{b}, \vec{c}]} \] Similarly, this can be simplified: \[ = \frac{\vec{b} \cdot (\vec{c} \times \vec{a}) + \vec{c} \cdot (\vec{c} \times \vec{a})}{[\vec{a}, \vec{b}, \vec{c}]} \] The second term is zero. \[ = \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{[\vec{a}, \vec{b}, \vec{c}]} \] This is also equal to 1. - **Third Term**: \((\vec{c} + \vec{a}) \cdot \vec{r}\) \[ = (\vec{c} + \vec{a}) \cdot \left(\frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\right) \] \[ = \frac{(\vec{c} + \vec{a}) \cdot (\vec{a} \times \vec{b})}{[\vec{a}, \vec{b}, \vec{c}]} \] Again, this can be simplified: \[ = \frac{\vec{c} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{b})}{[\vec{a}, \vec{b}, \vec{c}]} \] The second term is zero. \[ = \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{[\vec{a}, \vec{b}, \vec{c}]} \] This is equal to 1. 3. **Combine the Results**: Now we can combine all the results: \[ (\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r} = 1 + 1 + 1 = 3 \] Thus, the value of the expression is \(3\).

To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}\) given the definitions of \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\). 1. **Given Definitions**: - \(\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}\) - \(\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]}\) Here, \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp+(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9

veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/([veca vecb vecc]) , vecq=(veccxxveca)/([veca vecb vecc]) , vecr=(vecaxxvecb)/([veca vecb vecc]) then (A) vecp.veca=1 (B) vecp.veca+vecq.vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |ve...

    Text Solution

    |

  2. The volume of he parallelepiped whose sides are given by vec O A=2i...

    Text Solution

    |

  3. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  4. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  5. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  6. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  7. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  8. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  9. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  10. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  11. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  12. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  13. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  14. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  15. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  16. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  17. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  18. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  19. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  20. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |