Home
Class 11
MATHS
Let veca=hati-hatj, vecb=hatj-hatk, vecc...

Let `veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd` is a unit vector such that `veca.hatd=0=[vecb vecc vecd]` then `hatd` equals

A

`+- (hati + hatj - 2hatk)/sqrt6`

B

`+- (hati + hatj - hatk)/sqrt3`

C

`+- (hati + hatj + hatk)/sqrt3`

D

`+- hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the conditions given in the question regarding the vectors \( \vec{a} \), \( \vec{b} \), \( \vec{c} \), and the unit vector \( \hat{d} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - \hat{j}, \quad \vec{b} = \hat{j} - \hat{k}, \quad \vec{c} = \hat{k} - \hat{i} \] ### Step 2: Define the unit vector \( \hat{d} \) Let: \[ \hat{d} = x\hat{i} + y\hat{j} + z\hat{k} \] Since \( \hat{d} \) is a unit vector, we have: \[ \sqrt{x^2 + y^2 + z^2} = 1 \quad \Rightarrow \quad x^2 + y^2 + z^2 = 1 \quad \text{(Equation 1)} \] ### Step 3: Use the dot product condition We know that \( \vec{a} \cdot \hat{d} = 0 \): \[ (\hat{i} - \hat{j}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 0 \] Calculating the dot product: \[ x - y + 0 = 0 \quad \Rightarrow \quad x = y \quad \text{(Equation 2)} \] ### Step 4: Use the scalar triple product condition The scalar triple product \( [\vec{b}, \vec{c}, \hat{d}] = 0 \): \[ \begin{vmatrix} \hat{b} & \hat{c} & \hat{d} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ \end{vmatrix} = 0 \] Calculating the determinant: \[ \begin{vmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \\ x & y & z \\ \end{vmatrix} = 0 \] Expanding along the first row: \[ 0 \cdot \begin{vmatrix} 0 & 1 \\ y & z \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & 1 \\ x & z \end{vmatrix} + (-1) \cdot \begin{vmatrix} 0 & 1 \\ x & y \end{vmatrix} = 0 \] This simplifies to: \[ -x + y = 0 \quad \Rightarrow \quad x + y + z = 0 \quad \text{(Equation 3)} \] ### Step 5: Substitute Equation 2 into Equation 3 Substituting \( y = x \) into Equation 3: \[ x + x + z = 0 \quad \Rightarrow \quad 2x + z = 0 \quad \Rightarrow \quad z = -2x \quad \text{(Equation 4)} \] ### Step 6: Substitute Equations 2 and 4 into Equation 1 Substituting \( y = x \) and \( z = -2x \) into Equation 1: \[ x^2 + x^2 + (-2x)^2 = 1 \] This simplifies to: \[ x^2 + x^2 + 4x^2 = 1 \quad \Rightarrow \quad 6x^2 = 1 \quad \Rightarrow \quad x^2 = \frac{1}{6} \] Thus: \[ x = \pm \frac{1}{\sqrt{6}}, \quad y = \pm \frac{1}{\sqrt{6}}, \quad z = -2x = \mp \frac{2}{\sqrt{6}} \] ### Step 7: Write the final expression for \( \hat{d} \) Thus, the unit vector \( \hat{d} \) is: \[ \hat{d} = \pm \frac{1}{\sqrt{6}} \hat{i} + \pm \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \hat{k} \] This can be expressed as: \[ \hat{d} = \frac{1}{\sqrt{6}} \hat{i} + \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \hat{k} \quad \text{or} \quad \hat{d} = -\frac{1}{\sqrt{6}} \hat{i} - \frac{1}{\sqrt{6}} \hat{j} + \frac{2}{\sqrt{6}} \hat{k} \] ### Final Answer The unit vector \( \hat{d} \) can be expressed as: \[ \hat{d} = \frac{1}{\sqrt{6}} \hat{i} + \frac{1}{\sqrt{6}} \hat{j} - \frac{2}{\sqrt{6}} \hat{k} \quad \text{or} \quad \hat{d} = -\frac{1}{\sqrt{6}} \hat{i} - \frac{1}{\sqrt{6}} \hat{j} + \frac{2}{\sqrt{6}} \hat{k} \]

To solve the problem step by step, we will follow the conditions given in the question regarding the vectors \( \vec{a} \), \( \vec{b} \), \( \vec{c} \), and the unit vector \( \hat{d} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - \hat{j}, \quad \vec{b} = \hat{j} - \hat{k}, \quad \vec{c} = \hat{k} - \hat{i} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

Let veca=hati-hatj, vecb=hati-hatk and vecc=7hati-hatk. Find a vector hatd which is perpendicular to vectors veca and vecb and satisfies the condition vecc.vecd =1.

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector perpendicular to veca and coplanar with veca and vecb , then it is given by

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. The volume of he parallelepiped whose sides are given by vec O A=2i...

    Text Solution

    |

  2. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  3. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  4. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  5. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  6. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  7. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  8. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  9. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  10. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  11. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  12. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  13. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  14. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  15. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  16. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  17. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  18. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  19. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  20. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |