Home
Class 11
MATHS
If veca,vecb and vecc are non coplanar a...

If `veca,vecb and vecc` are non coplanar and unit vectors such that `vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2)` then the angle between `vea and vecb` is (A) `(3pi)/4` (B) `pi/4` (C) `pi/2` (D) `pi`

A

`3 pi//4`

B

`pi//4`

C

`pi//2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we will follow these steps: ### Step 1: Understand the given information We are given that \(\vec{a}, \vec{b}, \text{ and } \vec{c}\) are non-coplanar unit vectors, and the equation is: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}} \] ### Step 2: Use the vector triple product identity Using the vector triple product identity, we can rewrite \(\vec{a} \times (\vec{b} \times \vec{c})\) as: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \] Thus, we can equate: \[ (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{\vec{b} + \vec{c}}{\sqrt{2}} \] ### Step 3: Rearranging the equation Rearranging gives us: \[ (\vec{a} \cdot \vec{c})\vec{b} - \frac{\vec{b}}{\sqrt{2}} = (\vec{a} \cdot \vec{b})\vec{c} + \frac{\vec{c}}{\sqrt{2}} \] This implies: \[ \left(\vec{a} \cdot \vec{c} - \frac{1}{\sqrt{2}}\right)\vec{b} = \left(\vec{a} \cdot \vec{b} + \frac{1}{\sqrt{2}}\right)\vec{c} \] ### Step 4: Since \(\vec{b}\) and \(\vec{c}\) are non-coplanar For the equation to hold, the coefficients of \(\vec{b}\) and \(\vec{c}\) must be equal to zero because \(\vec{b}\) and \(\vec{c}\) are linearly independent: 1. \(\vec{a} \cdot \vec{c} - \frac{1}{\sqrt{2}} = 0\) 2. \(\vec{a} \cdot \vec{b} + \frac{1}{\sqrt{2}} = 0\) ### Step 5: Solve for dot products From the first equation: \[ \vec{a} \cdot \vec{c} = \frac{1}{\sqrt{2}} \] From the second equation: \[ \vec{a} \cdot \vec{b} = -\frac{1}{\sqrt{2}} \] ### Step 6: Find the angle between \(\vec{a}\) and \(\vec{b}\) Using the definition of the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Since both \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ -\frac{1}{\sqrt{2}} = 1 \cdot 1 \cdot \cos \theta \] Thus: \[ \cos \theta = -\frac{1}{\sqrt{2}} \] ### Step 7: Find the angle \(\theta\) The angle \(\theta\) that satisfies \(\cos \theta = -\frac{1}{\sqrt{2}}\) is: \[ \theta = \frac{3\pi}{4} \] ### Conclusion Therefore, the angle between \(\vec{a}\) and \(\vec{b}\) is: \[ \boxed{\frac{3\pi}{4}} \]

To find the angle between the vectors \(\vec{a}\) and \(\vec{b}\), we will follow these steps: ### Step 1: Understand the given information We are given that \(\vec{a}, \vec{b}, \text{ and } \vec{c}\) are non-coplanar unit vectors, and the equation is: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2 then the angle between veca and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb,vecc are three coplanar unit vector such that vecaxx(vecbxxvecc)=-vecb/2 then the angle betweeen vecb and vecc can be (A) pi/2 (B) pi/6 (C) pi (D) (2pi)/3

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If veca, vecb and vecc are non -coplanar unit vectors such that vecaxx(vecbxxvecc)=(vecbxxvecc)/sqrt2,vecb and vecc are non- parallel , then prove that the angle between veca and vecb "is" 3pi//4

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between the vectors veca and vecb is (a) pi (b) (7pi)/4 (c) pi/4 (d) (3pi)/4

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are ...

    Text Solution

    |

  2. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  3. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  4. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  5. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  6. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  7. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  8. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  9. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  10. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  11. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  12. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  13. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  14. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  15. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  16. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  17. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  18. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  19. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  20. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |