Home
Class 11
MATHS
Let vecu,vecv and vecw be vectors such t...

Let `vecu,vecv and vecw` be vectors such that `vecu+ vecv + vecw =0` if `|vecu|= 3, |vecv|=4 and |vecw|=5` then `vecu.vecv + vecv .vecw + vecw .vecu ` is (a) 47 (b) -25 (c) 0 (d) 25

A

47

B

`-25`

C

0

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} \) given that \( \vec{u} + \vec{v} + \vec{w} = 0 \) and the magnitudes of the vectors are \( |\vec{u}| = 3 \), \( |\vec{v}| = 4 \), and \( |\vec{w}| = 5 \). ### Step-by-Step Solution: 1. **Use the identity for the square of a sum of vectors**: We know that: \[ (\vec{u} + \vec{v} + \vec{w})^2 = \vec{u}^2 + \vec{v}^2 + \vec{w}^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] 2. **Substituting the condition \( \vec{u} + \vec{v} + \vec{w} = 0 \)**: Since \( \vec{u} + \vec{v} + \vec{w} = 0 \), we have: \[ 0^2 = \vec{u}^2 + \vec{v}^2 + \vec{w}^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] This simplifies to: \[ 0 = \vec{u}^2 + \vec{v}^2 + \vec{w}^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] 3. **Calculate the squares of the magnitudes**: We know: \[ |\vec{u}|^2 = 3^2 = 9, \quad |\vec{v}|^2 = 4^2 = 16, \quad |\vec{w}|^2 = 5^2 = 25 \] Therefore: \[ \vec{u}^2 + \vec{v}^2 + \vec{w}^2 = 9 + 16 + 25 = 50 \] 4. **Substituting back into the equation**: Substituting this into the equation gives: \[ 0 = 50 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] 5. **Solving for the dot products**: Rearranging the equation: \[ 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = -50 \] Dividing by 2: \[ \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} = -25 \] 6. **Final answer**: Thus, the value of \( \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} \) is \( -25 \). ### Conclusion: The correct answer is (b) -25.

To solve the problem, we need to find the value of \( \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} \) given that \( \vec{u} + \vec{v} + \vec{w} = 0 \) and the magnitudes of the vectors are \( |\vec{u}| = 3 \), \( |\vec{v}| = 4 \), and \( |\vec{w}| = 5 \). ### Step-by-Step Solution: 1. **Use the identity for the square of a sum of vectors**: We know that: \[ (\vec{u} + \vec{v} + \vec{w})^2 = \vec{u}^2 + \vec{v}^2 + \vec{w}^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if the projection of vecv " along " vecu is equal to that of vecw along vecu and vectors vecv and vecw are perpendicular to each other then |vecu-vecv + vecw| equals

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(vecwxxvecu)=vecv then vecu.(vecvxxvecw) will be equal to

If u and v are two non-collinear unit vectors such that |vecu × vecv| = ∣ ​ (vecu − vecv) /2 ​ ∣ ​ , then the value of ∣ vecu ×( vecu × vecv) ∣ ^2 is equal to

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  2. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  3. Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |v...

    Text Solution

    |

  4. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  5. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  6. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  7. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  8. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  9. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  10. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  11. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  12. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  13. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  14. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  15. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  16. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  17. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  18. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  19. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  20. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |