Home
Class 11
MATHS
Let veca = 2hati + hatj + hatk, and vecb...

Let `veca = 2hati + hatj + hatk, and vecb = hati+ hatj ` if c is a vector such that `veca .vecc = |vecc|, |vecc -veca| = 2sqrt2` and the angle between `veca xx vecb and vec is 30^(@)` , then `|(veca xx vecb)|xx vecc|` is equal to

A

`2//3`

B

`3//2`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector operations accordingly. ### Step 1: Define the vectors We have the vectors: \[ \vec{a} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + \hat{j} \] ### Step 2: Calculate the cross product \(\vec{a} \times \vec{b}\) To find \(\vec{a} \times \vec{b}\), we set up the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (1 \cdot 0 - 1 \cdot 1) - \hat{j} (2 \cdot 0 - 1 \cdot 1) + \hat{k} (2 \cdot 1 - 1 \cdot 1) \] \[ = \hat{i} (-1) - \hat{j} (-1) + \hat{k} (2 - 1) \] \[ = -\hat{i} + \hat{j} + \hat{k} \] Thus, \[ \vec{a} \times \vec{b} = -\hat{i} + \hat{j} + \hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{a} \times \vec{b}\) Now, we find the magnitude: \[ |\vec{a} \times \vec{b}| = \sqrt{(-1)^2 + (1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 4: Use the given conditions about vector \(\vec{c}\) We know: 1. \(\vec{a} \cdot \vec{c} = |\vec{c}|\) 2. \(|\vec{c} - \vec{a}| = 2\sqrt{2}\) From the second condition, we square both sides: \[ |\vec{c} - \vec{a}|^2 = 8 \] This expands to: \[ |\vec{c}|^2 - 2\vec{c} \cdot \vec{a} + |\vec{a}|^2 = 8 \] ### Step 5: Calculate \(|\vec{a}|\) \[ |\vec{a}| = \sqrt{(2)^2 + (1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 6: Substitute known values Using \(\vec{a} \cdot \vec{c} = |\vec{c}|\), we can replace \(\vec{c} \cdot \vec{a}\) with \(|\vec{c}|\): \[ |\vec{c}|^2 - 2|\vec{c}| + 6 = 8 \] This simplifies to: \[ |\vec{c}|^2 - 2|\vec{c}| - 2 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ |\vec{c}| = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = \frac{2 \pm 2\sqrt{3}}{2} = 1 \pm \sqrt{3} \] Since magnitudes are positive, we take: \[ |\vec{c}| = 1 + \sqrt{3} \] ### Step 8: Find \(|(\vec{a} \times \vec{b}) \times \vec{c}|\) Using the formula: \[ |(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin \theta \] where \(\theta = 30^\circ\) and \(\sin 30^\circ = \frac{1}{2}\): \[ |(\vec{a} \times \vec{b}) \times \vec{c}| = \sqrt{3} \cdot (1 + \sqrt{3}) \cdot \frac{1}{2} \] \[ = \frac{\sqrt{3} (1 + \sqrt{3})}{2} = \frac{\sqrt{3} + 3}{2} \] ### Final Answer Thus, the final answer is: \[ \boxed{\frac{\sqrt{3} + 3}{2}} \]

To solve the problem step by step, we will follow the given conditions and use vector operations accordingly. ### Step 1: Define the vectors We have the vectors: \[ \vec{a} = 2\hat{i} + \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vecC=0 and the angle between vecB and vecC " be" pi//3 . Then vecA = +- 2(vecB xx vecC) .

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. If veca, vecb and vecc are three non-coplanar vectors, then (veca + ve...

    Text Solution

    |

  2. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  3. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  4. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  5. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  6. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  7. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  8. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  9. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  10. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  11. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  12. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  13. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  14. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  15. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  16. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  17. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  18. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  19. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  20. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |