Home
Class 11
MATHS
Let veca = 2i + j+k, vecb = i+ 2j -k and...

Let `veca = 2i + j+k, vecb = i+ 2j -k and a` unit vector `vecc` be coplanar. If `vecc` is pependicular to `veca`. Then `vecc` is

A

`1/sqrt2(-j+k)`

B

`1/sqrt3(i-j-k)`

C

`1/sqrt5(i-2j)`

D

`1/sqrt3(i-j-k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the unit vector \(\vec{c}\) that is coplanar with \(\vec{a}\) and \(\vec{b}\) and is also perpendicular to \(\vec{a}\). ### Step 1: Define the vectors We are given: \[ \vec{a} = 2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Express \(\vec{c}\) in terms of \(\vec{a}\) and \(\vec{b}\) Since \(\vec{c}\) is coplanar with \(\vec{a}\) and \(\vec{b}\), we can express \(\vec{c}\) as a linear combination of \(\vec{a}\) and \(\vec{b}\): \[ \vec{c} = x\vec{a} + y\vec{b} \] Substituting the values of \(\vec{a}\) and \(\vec{b}\): \[ \vec{c} = x(2\hat{i} + \hat{j} + \hat{k}) + y(\hat{i} + 2\hat{j} - \hat{k}) \] \[ = (2x + y)\hat{i} + (x + 2y)\hat{j} + (x - y)\hat{k} \] ### Step 3: Use the condition that \(\vec{c}\) is perpendicular to \(\vec{a}\) For \(\vec{c}\) to be perpendicular to \(\vec{a}\), the dot product \(\vec{a} \cdot \vec{c}\) must equal 0: \[ \vec{a} \cdot \vec{c} = (2\hat{i} + \hat{j} + \hat{k}) \cdot ((2x + y)\hat{i} + (x + 2y)\hat{j} + (x - y)\hat{k}) = 0 \] Calculating the dot product: \[ = 2(2x + y) + 1(x + 2y) + 1(x - y) = 0 \] \[ = 4x + 2y + x + 2y + x - y = 0 \] \[ = 6x + 3y = 0 \] This simplifies to: \[ 2x + y = 0 \quad \Rightarrow \quad y = -2x \] ### Step 4: Substitute \(y\) back into \(\vec{c}\) Now substitute \(y = -2x\) into the expression for \(\vec{c}\): \[ \vec{c} = (2x - 2x)\hat{i} + (x + 2(-2x))\hat{j} + (x - (-2x))\hat{k} \] \[ = 0\hat{i} + (x - 4x)\hat{j} + (x + 2x)\hat{k} \] \[ = 0\hat{i} - 3x\hat{j} + 3x\hat{k} \] \[ = 3x(-\hat{j} + \hat{k}) \] ### Step 5: Find the unit vector \(\vec{c}\) To make \(\vec{c}\) a unit vector, we need to find the magnitude of \(\vec{c}\): \[ |\vec{c}| = \sqrt{(3x)^2 + (-3x)^2} = \sqrt{9x^2 + 9x^2} = \sqrt{18x^2} = 3\sqrt{2}|x| \] Setting the magnitude equal to 1: \[ 3\sqrt{2}|x| = 1 \quad \Rightarrow \quad |x| = \frac{1}{3\sqrt{2}} \] Thus, \(x = \frac{1}{3\sqrt{2}}\) or \(x = -\frac{1}{3\sqrt{2}}\). ### Step 6: Substitute \(x\) back to find \(\vec{c}\) Using \(x = \frac{1}{3\sqrt{2}}\): \[ \vec{c} = 3\left(\frac{1}{3\sqrt{2}}\right)(-\hat{j} + \hat{k}) = \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k}) \] Thus, the unit vector \(\vec{c}\) is: \[ \vec{c} = \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k}) \] ### Final Answer \[ \vec{c} = \frac{1}{\sqrt{2}}(-\hat{j} + \hat{k}) \]

To solve the problem step-by-step, we need to find the unit vector \(\vec{c}\) that is coplanar with \(\vec{a}\) and \(\vec{b}\) and is also perpendicular to \(\vec{a}\). ### Step 1: Define the vectors We are given: \[ \vec{a} = 2\hat{i} + \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca=2 hat i+2 hat j+3 hat k , vecb=- hat i+2 hat j+ hat k and vecc=3 hat i+ hat j are such that veca+lambda vecb is perpendicular to vecc , then find the value of lambda .

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k and vecc= hat i-2 hat j+ hat k find a unit vector parallel to the vector 2 veca- vecb+3 vecc .

Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. Let vecA be perpendicular to vecB + vecC, vecB " to " vecC + vecA and vecC " to" vecA + vecB then the length of vector vecA + vecB+ vecC is __________.

If veca = hat i+ hat j+ hat k , vecb=2 hat i- hat j+3 hat k and vecc= hat i-2 hat j+ hat k find a unit vector parallel to the vector 2 veca- vec b+3 vecc .

Let veca, vecb and vecc be unit vector such that veca + vecb - vecc =0 . If the area of triangle formed by vectors veca and vecb is A, then what is the value of 4A^(2) ?

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let veca,vecb and vecc be a set of non- coplanar vectors and veca'vecb' and vecc' be its reciprocal set. prove that veca=(vecb'xxvecc')/([veca'vecb'vecc']),vecb=(vecc'xxveca')/([veca'vecb'vecc'])andvecc=(veca'xxvecb')/([veca'vecb'vecc'])

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |