Home
Class 11
MATHS
If the vectors veca,vecb,vecc form the s...

If the vectors `veca,vecb,vecc` form the sides BC,CA and AB respectively of a triangle ABC then (A) `veca.(vecbxxvecc)=vec0` (B) `vecaxx(vecbxvecc)=vec0` (C) `veca.vecb=vecc=vecc=veca.a!=0` (D) `vecaxxvecb+vecbxxvecc+veccxxvecavec0`

A

`veca.vecb+ vecb.vecc+vecc.veca=0`

B

`vecaxxvecb = vecbxxvecc =veccxxveca`

C

`veca.vecb = vecb.vecc = vecc.veca`

D

`vecaxxvecb + vecbxxvecc +veccxxveca=vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the properties of the vectors that represent the sides of triangle ABC. Given that the vectors \(\vec{a}, \vec{b}, \vec{c}\) represent the sides BC, CA, and AB respectively, we can derive the relationships between these vectors. ### Step-by-Step Solution: 1. **Understanding the Triangle Condition**: Since \(\vec{a}, \vec{b}, \vec{c}\) are the sides of triangle ABC, we can use the triangle law of vectors which states that the sum of the vectors forming the triangle is equal to zero: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] 2. **Rearranging the Equation**: From the equation above, we can rearrange it to express one vector in terms of the others: \[ \vec{c} = -(\vec{a} + \vec{b}) \] 3. **Taking the Cross Product**: We can take the cross product of \(\vec{c}\) with \(\vec{a}\): \[ \vec{c} \times \vec{a} = -(\vec{a} + \vec{b}) \times \vec{a} \] Since \(\vec{a} \times \vec{a} = \vec{0}\), we simplify this to: \[ \vec{c} \times \vec{a} = -\vec{b} \times \vec{a} \] 4. **Rearranging the Cross Product**: We can rearrange the equation: \[ \vec{c} \times \vec{a} + \vec{b} \times \vec{a} = \vec{0} \] This implies: \[ \vec{c} \times \vec{a} = -\vec{b} \times \vec{a} \] 5. **Taking Another Cross Product**: Now, we take the cross product of \(\vec{b}\) with the original equation: \[ \vec{b} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0} \] This leads to: \[ \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} = \vec{0} \] Again, since \(\vec{b} \times \vec{b} = \vec{0}\), we have: \[ \vec{b} \times \vec{a} + \vec{b} \times \vec{c} = \vec{0} \] 6. **Final Relationships**: From the above equations, we can conclude: \[ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0} \] This shows that the sum of the cross products of the sides of the triangle is equal to zero. ### Conclusion: Thus, the correct option from the provided choices is: **(D)** \(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}\).

To solve the problem, we need to analyze the properties of the vectors that represent the sides of triangle ABC. Given that the vectors \(\vec{a}, \vec{b}, \vec{c}\) represent the sides BC, CA, and AB respectively, we can derive the relationships between these vectors. ### Step-by-Step Solution: 1. **Understanding the Triangle Condition**: Since \(\vec{a}, \vec{b}, \vec{c}\) are the sides of triangle ABC, we can use the triangle law of vectors which states that the sum of the vectors forming the triangle is equal to zero: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca+2vecb+3vecc=0 , then vecaxxvecb+vecbxxvecc+veccxxveca=

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vector veca lies in the plane of vectors vecb and vecc which of the following is correct? (A) veca.(vecbxxvecc)=-1 (B) veca.(vecbxxvecc)=0 (C) veca.(vecbxxvecc)=1 (D) veca.(vecbxxvecc)=2

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |