Home
Class 11
MATHS
If veca,vecb, vecc are unit coplanar vec...

If `veca,vecb, vecc` are unit coplanar vectors then the scalar triple product `[2veca-vecb, 2vecb-c ,vec2c-veca]` is equal to (A) `0` (B) `1` (C) `-sqrt(3)` (D) `sqrt(3)`

A

0

B

1

C

`-sqrt3`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the scalar triple product \([2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a}]\) given that \(\vec{a}, \vec{b}, \vec{c}\) are unit coplanar vectors. ### Step-by-step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is given by \(\vec{u} \cdot (\vec{v} \times \vec{w})\). It represents the volume of the parallelepiped formed by the three vectors. If the vectors are coplanar, the volume is zero. 2. **Identify the Vectors**: Let: \[ \vec{u} = 2\vec{a} - \vec{b}, \quad \vec{v} = 2\vec{b} - \vec{c}, \quad \vec{w} = 2\vec{c} - \vec{a} \] 3. **Calculate the Scalar Triple Product**: We need to compute: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] 4. **Finding \(\vec{v} \times \vec{w}\)**: First, calculate \(\vec{v} \times \vec{w}\): \[ \vec{v} \times \vec{w} = (2\vec{b} - \vec{c}) \times (2\vec{c} - \vec{a}) \] Using the distributive property of the cross product: \[ = 2\vec{b} \times 2\vec{c} - 2\vec{b} \times \vec{a} - \vec{c} \times 2\vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we have: \[ = 4\vec{b} \times \vec{c} - 2\vec{b} \times \vec{a} + \vec{c} \times \vec{a} \] 5. **Finding \(\vec{u} \cdot (\vec{v} \times \vec{w})\)**: Now compute \(\vec{u} \cdot (\vec{v} \times \vec{w})\): \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = (2\vec{a} - \vec{b}) \cdot (4\vec{b} \times \vec{c} - 2\vec{b} \times \vec{a} + \vec{c} \times \vec{a}) \] Expanding this using the distributive property: \[ = 2\vec{a} \cdot (4\vec{b} \times \vec{c}) - \vec{b} \cdot (4\vec{b} \times \vec{c}) - 2\vec{a} \cdot (\vec{b} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] The term \(\vec{b} \cdot (4\vec{b} \times \vec{c}) = 0\) since a vector dotted with a cross product of itself and another vector is zero. The term \(\vec{a} \cdot (\vec{b} \times \vec{a}) = 0\) for the same reason. 6. **Final Expression**: Thus, we have: \[ = 8\vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) \] Since \(\vec{a}, \vec{b}, \vec{c}\) are coplanar, \(\vec{a} \cdot (\vec{b} \times \vec{c}) = 0\). Hence: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = 0 \] ### Conclusion: The scalar triple product \([2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a}]\) is equal to \(0\). ### Answer: (A) \(0\)

To solve the problem, we need to evaluate the scalar triple product \([2\vec{a} - \vec{b}, 2\vec{b} - \vec{c}, 2\vec{c} - \vec{a}]\) given that \(\vec{a}, \vec{b}, \vec{c}\) are unit coplanar vectors. ### Step-by-step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product of three vectors \(\vec{u}, \vec{v}, \vec{w}\) is given by \(\vec{u} \cdot (\vec{v} \times \vec{w})\). It represents the volume of the parallelepiped formed by the three vectors. If the vectors are coplanar, the volume is zero. 2. **Identify the Vectors**: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)] is equal to

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

The scalar triple product [veca+vecb-vec c" "vecb+vec c -veca" "vec c+veca-vecb] is equal to :

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |