Home
Class 11
MATHS
Let vecV = 2hati +hatj - hatk and vecW= ...

Let `vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU` is a unit vector, then the maximum value of the scalar triple product `[ vecU vecV vecW]` is

A

`-1`

B

`sqrt10 + sqrt6`

C

`sqrt59`

D

`sqrt60`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the scalar triple product \([ \vec{U}, \vec{V}, \vec{W} ]\), we will follow these steps: ### Step 1: Define the vectors We are given: \[ \vec{V} = 2\hat{i} + \hat{j} - \hat{k} \] \[ \vec{W} = \hat{i} + 3\hat{k} \] ### Step 2: Calculate the cross product \(\vec{V} \times \vec{W}\) To find \(\vec{V} \times \vec{W}\), we will use the determinant of a matrix formed by the unit vectors and the components of \(\vec{V}\) and \(\vec{W}\): \[ \vec{V} \times \vec{W} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & -1 \\ 0 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} \] \[ = \hat{i} (1 \cdot 3 - 0 \cdot -1) - \hat{j} (2 \cdot 3 - 1 \cdot -1) + \hat{k} (2 \cdot 0 - 1 \cdot 1) \] \[ = 3\hat{i} - (6 + 1)\hat{j} - \hat{k} \] \[ = 3\hat{i} - 7\hat{j} - \hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{V} \times \vec{W}\) Now, we need to find the magnitude of \(\vec{V} \times \vec{W}\): \[ |\vec{V} \times \vec{W}| = \sqrt{3^2 + (-7)^2 + (-1)^2} \] \[ = \sqrt{9 + 49 + 1} = \sqrt{59} \] ### Step 4: Express the scalar triple product The scalar triple product can be expressed as: \[ [\vec{U}, \vec{V}, \vec{W}] = \vec{U} \cdot (\vec{V} \times \vec{W}) \] Using the property of the dot product, we have: \[ [\vec{U}, \vec{V}, \vec{W}] = |\vec{U}| |\vec{V} \times \vec{W}| \cos \theta \] Since \(\vec{U}\) is a unit vector, \(|\vec{U}| = 1\): \[ [\vec{U}, \vec{V}, \vec{W}] = \sqrt{59} \cos \theta \] ### Step 5: Find the maximum value The maximum value of \(\cos \theta\) is 1 (when \(\theta = 0\)), thus the maximum value of the scalar triple product is: \[ \text{Maximum value} = \sqrt{59} \cdot 1 = \sqrt{59} \] ### Final Answer The maximum value of the scalar triple product \([ \vec{U}, \vec{V}, \vec{W} ]\) is \(\sqrt{59}\). ---

To find the maximum value of the scalar triple product \([ \vec{U}, \vec{V}, \vec{W} ]\), we will follow these steps: ### Step 1: Define the vectors We are given: \[ \vec{V} = 2\hat{i} + \hat{j} - \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vector vecP=a hati + a hatj +3hatk and vecQ=a hati -2 hatj -hatk are perpendicular to each other , then the positive value of a is

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn| is equal to

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let vecu=hati+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

Velocity vectors of three masses 2kg,1kg and 3 kg are vecv_1 = (hati-2hatj+hatk) m/s,vecV_2 = (2hati +2hatj -hatk) m/s and vecv_3 respectively. If velocity vector of center of mass of the system is zero then value of vecv_3 will be

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |