Home
Class 11
MATHS
If veca = (hati + hatj +hatk), veca. vec...

If `veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb` is (a)`hati - hatj + hatk` (b) `2hati - hatk` (c) `hati` (d) `2hati`

A

`hati - hatj + hatk`

B

`2hati - hatk`

C

`hati`

D

`2hati`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{b}\) given the conditions involving vectors \(\vec{a}\) and \(\vec{b}\). 1. **Define the vectors**: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] Let \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\). 2. **Use the dot product condition**: We know that: \[ \vec{a} \cdot \vec{b} = 1 \] This can be expanded as: \[ (\hat{i} + \hat{j} + \hat{k}) \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) = b_1 + b_2 + b_3 = 1 \quad \text{(Equation 1)} \] 3. **Use the cross product condition**: We are given: \[ \vec{a} \times \vec{b} = \hat{j} - \hat{k} \] We can calculate the cross product using the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ b_1 & b_2 & b_3 \end{vmatrix} \] This expands to: \[ \hat{i} \begin{vmatrix} 1 & 1 \\ b_2 & b_3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ b_1 & b_3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ b_1 & b_2 \end{vmatrix} \] Calculating the determinants: - For \(\hat{i}\): \(1 \cdot b_3 - 1 \cdot b_2 = b_3 - b_2\) - For \(\hat{j}\): \(1 \cdot b_3 - 1 \cdot b_1 = b_3 - b_1\) - For \(\hat{k}\): \(1 \cdot b_2 - 1 \cdot b_1 = b_2 - b_1\) Thus: \[ \vec{a} \times \vec{b} = (b_3 - b_2) \hat{i} - (b_3 - b_1) \hat{j} + (b_2 - b_1) \hat{k} \] Setting this equal to \(\hat{j} - \hat{k}\), we get: \[ b_3 - b_2 = 0 \quad \text{(Equation 2)} \] \[ -(b_3 - b_1) = 1 \quad \Rightarrow \quad b_3 - b_1 = -1 \quad \text{(Equation 3)} \] \[ b_2 - b_1 = -1 \quad \text{(Equation 4)} \] 4. **Solve the equations**: From Equation 2: \[ b_2 = b_3 \] Substitute \(b_2\) in Equation 4: \[ b_3 - b_1 = -1 \quad \Rightarrow \quad b_1 = b_3 + 1 \quad \text{(from Equation 3)} \] Substitute \(b_1\) and \(b_2\) in Equation 1: \[ (b_3 + 1) + b_3 + b_3 = 1 \] \[ 3b_3 + 1 = 1 \quad \Rightarrow \quad 3b_3 = 0 \quad \Rightarrow \quad b_3 = 0 \] Thus, from \(b_3 = 0\): \[ b_2 = 0 \quad \text{and} \quad b_1 = 1 \] 5. **Final vector**: Therefore, the vector \(\vec{b}\) is: \[ \vec{b} = 1 \hat{i} + 0 \hat{j} + 0 \hat{k} = \hat{i} \] 6. **Conclusion**: The correct option is: \[ \text{(c) } \hat{i} \]

To solve the problem, we need to find the vector \(\vec{b}\) given the conditions involving vectors \(\vec{a}\) and \(\vec{b}\). 1. **Define the vectors**: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k} \] Let \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk , then vecb is

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

Find vecaxxvecb and |vecaxxvecb| if veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |