Home
Class 11
MATHS
if veca , vecb and vecc are three non-ze...

if `veca , vecb and vecc` are three non-zero, non- coplanar vectors and `vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca,vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca,vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1),vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1),vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1)`, then the set of orthogonal vectors is

A

`(veca,vecb_(1),vecc_(3))`

B

`(vecca,vecb_(1),vecc_(2))`

C

`(veca, vecb_(1),vecc_(1))`

D

`(veca,vecb_(2),vecc_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their relationships. We are tasked with determining which set of vectors is orthogonal. Let's break down the solution step by step. ### Step 1: Understanding the Definitions We have three non-zero, non-coplanar vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We also have derived vectors \(\vec{b}_1\), \(\vec{b}_2\), \(\vec{c}_1\), \(\vec{c}_2\), \(\vec{c}_3\), and \(\vec{c}_4\) based on the given formulas. ### Step 2: Calculate \(\vec{b}_1\) \[ \vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] This represents the projection of \(\vec{b}\) onto \(\vec{a}\) subtracted from \(\vec{b}\), which gives us a vector orthogonal to \(\vec{a}\). ### Step 3: Calculate \(\vec{c}_2\) \[ \vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1 \] This vector \(\vec{c}_2\) is adjusted similarly to \(\vec{c}\) by subtracting projections onto \(\vec{a}\) and \(\vec{b}_1\). ### Step 4: Check Orthogonality To check if the vectors are orthogonal, we need to compute the dot products: 1. **Check \(\vec{a} \cdot \vec{b}_1\)**: \[ \vec{a} \cdot \vec{b}_1 = \vec{a} \cdot \left(\vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}\right) = \vec{a} \cdot \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \cdot \vec{a} = \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} = 0 \] Thus, \(\vec{a}\) is orthogonal to \(\vec{b}_1\). 2. **Check \(\vec{a} \cdot \vec{c}_2\)**: \[ \vec{a} \cdot \vec{c}_2 = \vec{a} \cdot \left(\vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1\right) \] The first term will simplify to zero as shown previously. The second term also simplifies to zero due to the orthogonality established earlier. Thus, \(\vec{a} \cdot \vec{c}_2 = 0\). 3. **Check \(\vec{b}_1 \cdot \vec{c}\)**: \[ \vec{b}_1 \cdot \vec{c} = \left(\vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}\right) \cdot \vec{c} \] The first term gives a non-zero value, but the second term will also simplify to zero since \(\vec{b}_1\) is orthogonal to \(\vec{a}\). Therefore, \(\vec{b}_1 \cdot \vec{c} = 0\). ### Conclusion From the calculations above, we find that the vectors \(\vec{a}\), \(\vec{b}_1\), and \(\vec{c}_2\) are orthogonal to each other. Therefore, the set of orthogonal vectors is: \[ \{\vec{a}, \vec{b}_1, \vec{c}_2\} \]

To solve the problem, we need to analyze the given vectors and their relationships. We are tasked with determining which set of vectors is orthogonal. Let's break down the solution step by step. ### Step 1: Understanding the Definitions We have three non-zero, non-coplanar vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We also have derived vectors \(\vec{b}_1\), \(\vec{b}_2\), \(\vec{c}_1\), \(\vec{c}_2\), \(\vec{c}_3\), and \(\vec{c}_4\) based on the given formulas. ### Step 2: Calculate \(\vec{b}_1\) \[ \vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of mutually orthogonal vectors is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |