Home
Class 11
MATHS
Let veca=hati+2hatj +hatk, vec=hati-hatj...

Let `veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk`. A vector in the plane of `veca and vecb` whose projection on `vecc is 1/sqrt(3)` is (A) `4hati-hatj+4hatk` (B) `hati+hatj-3hatk` (C) `2hati+hatj-2hatk` (D) `4hati+hatj-4hatk`

A

`4 hati - hatj + 4hatk`

B

`3hati+hatj - 3hatk`

C

`2hati+hatj- 2hatk`

D

`4hati + hatj -4hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find a vector \( \vec{R} \) in the plane of vectors \( \vec{A} \) and \( \vec{B} \) whose projection on vector \( \vec{C} \) is \( \frac{1}{\sqrt{3}} \). ### Step 1: Define the vectors Given: - \( \vec{A} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{C} = \hat{i} + \hat{j} - \hat{k} \) ### Step 2: Assume the vector \( \vec{R} \) Since \( \vec{R} \) lies in the plane of \( \vec{A} \) and \( \vec{B} \), we can express \( \vec{R} \) as: \[ \vec{R} = \vec{A} + \lambda \vec{B} \] Substituting the values of \( \vec{A} \) and \( \vec{B} \): \[ \vec{R} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \] \[ \vec{R} = (1 + \lambda)\hat{i} + (2 - \lambda)\hat{j} + (1 + \lambda)\hat{k} \] ### Step 3: Calculate the projection of \( \vec{R} \) on \( \vec{C} \) The projection of \( \vec{R} \) on \( \vec{C} \) is given by: \[ \text{Projection of } \vec{R} \text{ on } \vec{C} = \frac{\vec{R} \cdot \vec{C}}{|\vec{C}|} \] First, we calculate \( |\vec{C}| \): \[ |\vec{C}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \] Now, we compute \( \vec{R} \cdot \vec{C} \): \[ \vec{R} \cdot \vec{C} = ((1 + \lambda)\hat{i} + (2 - \lambda)\hat{j} + (1 + \lambda)\hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) \] Calculating the dot product: \[ = (1 + \lambda)(1) + (2 - \lambda)(1) + (1 + \lambda)(-1) \] \[ = (1 + \lambda) + (2 - \lambda) - (1 + \lambda) \] \[ = 2 \] ### Step 4: Set up the equation for projection We know that the projection is given as \( \frac{1}{\sqrt{3}} \): \[ \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] This means we can set up the equation: \[ \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}} \implies 2 = \pm 1 \] This gives us two cases: 1. \( 2 = 1 \) (not possible) 2. \( 2 = -1 \) (not possible) ### Step 5: Solve for \( \lambda \) We need to solve: \[ \vec{R} \cdot \vec{C} = \pm 1 \] Thus: \[ 2 = 1 \quad \text{or} \quad 2 = -1 \] This leads to two equations: 1. \( 2 - \lambda = 1 \) → \( \lambda = 1 \) 2. \( 2 - \lambda = -1 \) → \( \lambda = 3 \) ### Step 6: Find \( \vec{R} \) for both values of \( \lambda \) 1. For \( \lambda = 1 \): \[ \vec{R} = (1 + 1)\hat{i} + (2 - 1)\hat{j} + (1 + 1)\hat{k} = 2\hat{i} + 1\hat{j} + 2\hat{k} \] 2. For \( \lambda = 3 \): \[ \vec{R} = (1 + 3)\hat{i} + (2 - 3)\hat{j} + (1 + 3)\hat{k} = 4\hat{i} - 1\hat{j} + 4\hat{k} \] ### Step 7: Check the options Now we check which of these vectors matches the options given: - \( 4\hat{i} - \hat{j} + 4\hat{k} \) corresponds to option (A). ### Final Answer The correct answer is (A) \( 4\hat{i} - \hat{j} + 4\hat{k} \).

To solve the problem step by step, we will find a vector \( \vec{R} \) in the plane of vectors \( \vec{A} \) and \( \vec{B} \) whose projection on vector \( \vec{C} \) is \( \frac{1}{\sqrt{3}} \). ### Step 1: Define the vectors Given: - \( \vec{A} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{C} = \hat{i} + \hat{j} - \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -single correct answer type
  1. Let vecp,vecq, vecr be three mutually perpendicular vectors of the sam...

    Text Solution

    |

  2. Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vecto...

    Text Solution

    |

  3. Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplana...

    Text Solution

    |

  4. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  5. Let the vectors veca, vecb,vecc and vecd be such that (vecaxxvecb)xx(v...

    Text Solution

    |

  6. If veca,vecb, vecc are unit coplanar vectors then the scalar triple pr...

    Text Solution

    |

  7. if hata, hatb and hatc are unit vectors. Then |hata - hatb|^(2) + |hat...

    Text Solution

    |

  8. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  9. Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a u...

    Text Solution

    |

  10. Find the value of a so that the volume of the parallelopiped formed b...

    Text Solution

    |

  11. If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -ha...

    Text Solution

    |

  12. The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hat...

    Text Solution

    |

  13. if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...

    Text Solution

    |

  14. Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk....

    Text Solution

    |

  15. Lelt two non collinear unit vectors hata and hatb form and acute angle...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  17. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  18. Let P, Q, R and S be the points on the plane with position vectors -2h...

    Text Solution

    |

  19. Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj...

    Text Solution

    |

  20. Let bar(PR)=3hati+hatj-2hatk and bar(SQ)=hati-3hatj-4hatk determine d...

    Text Solution

    |